Baer semisimple modules and Baer rings
We consider Baer rings and Baer semisimple \(R\)-modules which are generalizations of semisimple modules. Several characterization theorems of Baer semisimple modules are obtained. In particular, we prove that a ring \(R\) is a Baer ring if and only if \(R\) itself, regarded as a regular \(R\)-modu...
Gespeichert in:
| Datum: | 2018 |
|---|---|
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Lugansk National Taras Shevchenko University
2018
|
| Schlagworte: | |
| Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/807 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematics| id |
admjournalluguniveduua-article-807 |
|---|---|
| record_format |
ojs |
| spelling |
admjournalluguniveduua-article-8072018-03-22T09:39:19Z Baer semisimple modules and Baer rings Guo, Xiaojiang Shum, K. P. Baer module; Baer semisimple module; perpetual submodule; Baer ring 16W60 We consider Baer rings and Baer semisimple \(R\)-modules which are generalizations of semisimple modules. Several characterization theorems of Baer semisimple modules are obtained. In particular, we prove that a ring \(R\) is a Baer ring if and only if \(R\) itself, regarded as a regular \(R\)-module, is Baer semisimple. Lugansk National Taras Shevchenko University 2018-03-22 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/807 Algebra and Discrete Mathematics; Vol 7, No 2 (2008) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/807/337 Copyright (c) 2018 Algebra and Discrete Mathematics |
| institution |
Algebra and Discrete Mathematics |
| baseUrl_str |
|
| datestamp_date |
2018-03-22T09:39:19Z |
| collection |
OJS |
| language |
English |
| topic |
Baer module Baer semisimple module perpetual submodule Baer ring 16W60 |
| spellingShingle |
Baer module Baer semisimple module perpetual submodule Baer ring 16W60 Guo, Xiaojiang Shum, K. P. Baer semisimple modules and Baer rings |
| topic_facet |
Baer module Baer semisimple module perpetual submodule Baer ring 16W60 |
| format |
Article |
| author |
Guo, Xiaojiang Shum, K. P. |
| author_facet |
Guo, Xiaojiang Shum, K. P. |
| author_sort |
Guo, Xiaojiang |
| title |
Baer semisimple modules and Baer rings |
| title_short |
Baer semisimple modules and Baer rings |
| title_full |
Baer semisimple modules and Baer rings |
| title_fullStr |
Baer semisimple modules and Baer rings |
| title_full_unstemmed |
Baer semisimple modules and Baer rings |
| title_sort |
baer semisimple modules and baer rings |
| description |
We consider Baer rings and Baer semisimple \(R\)-modules which are generalizations of semisimple modules. Several characterization theorems of Baer semisimple modules are obtained. In particular, we prove that a ring \(R\) is a Baer ring if and only if \(R\) itself, regarded as a regular \(R\)-module, is Baer semisimple. |
| publisher |
Lugansk National Taras Shevchenko University |
| publishDate |
2018 |
| url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/807 |
| work_keys_str_mv |
AT guoxiaojiang baersemisimplemodulesandbaerrings AT shumkp baersemisimplemodulesandbaerrings |
| first_indexed |
2025-12-02T15:48:12Z |
| last_indexed |
2025-12-02T15:48:12Z |
| _version_ |
1850412097539670016 |