Baer semisimple modules and Baer rings

We consider  Baer rings and Baer semisimple \(R\)-modules which are generalizations of semisimple modules. Several characterization theorems of Baer semisimple modules are obtained. In particular, we prove that a ring \(R\) is a Baer ring if and only if \(R\) itself, regarded as a regular \(R\)-modu...

Full description

Saved in:
Bibliographic Details
Date:2018
Main Authors: Guo, Xiaojiang, Shum, K. P.
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2018
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/807
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
_version_ 1856543071647301632
author Guo, Xiaojiang
Shum, K. P.
author_facet Guo, Xiaojiang
Shum, K. P.
author_sort Guo, Xiaojiang
baseUrl_str
collection OJS
datestamp_date 2018-03-22T09:39:19Z
description We consider  Baer rings and Baer semisimple \(R\)-modules which are generalizations of semisimple modules. Several characterization theorems of Baer semisimple modules are obtained. In particular, we prove that a ring \(R\) is a Baer ring if and only if \(R\) itself, regarded as a regular \(R\)-module, is Baer semisimple.
first_indexed 2025-12-02T15:48:12Z
format Article
id admjournalluguniveduua-article-807
institution Algebra and Discrete Mathematics
language English
last_indexed 2025-12-02T15:48:12Z
publishDate 2018
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-8072018-03-22T09:39:19Z Baer semisimple modules and Baer rings Guo, Xiaojiang Shum, K. P. Baer module; Baer semisimple module; perpetual submodule; Baer ring 16W60 We consider  Baer rings and Baer semisimple \(R\)-modules which are generalizations of semisimple modules. Several characterization theorems of Baer semisimple modules are obtained. In particular, we prove that a ring \(R\) is a Baer ring if and only if \(R\) itself, regarded as a regular \(R\)-module, is Baer semisimple. Lugansk National Taras Shevchenko University 2018-03-22 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/807 Algebra and Discrete Mathematics; Vol 7, No 2 (2008) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/807/337 Copyright (c) 2018 Algebra and Discrete Mathematics
spellingShingle Baer module
Baer semisimple module
perpetual submodule
Baer ring
16W60
Guo, Xiaojiang
Shum, K. P.
Baer semisimple modules and Baer rings
title Baer semisimple modules and Baer rings
title_full Baer semisimple modules and Baer rings
title_fullStr Baer semisimple modules and Baer rings
title_full_unstemmed Baer semisimple modules and Baer rings
title_short Baer semisimple modules and Baer rings
title_sort baer semisimple modules and baer rings
topic Baer module
Baer semisimple module
perpetual submodule
Baer ring
16W60
topic_facet Baer module
Baer semisimple module
perpetual submodule
Baer ring
16W60
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/807
work_keys_str_mv AT guoxiaojiang baersemisimplemodulesandbaerrings
AT shumkp baersemisimplemodulesandbaerrings