Baer semisimple modules and Baer rings
We consider Baer rings and Baer semisimple \(R\)-modules which are generalizations of semisimple modules. Several characterization theorems of Baer semisimple modules are obtained. In particular, we prove that a ring \(R\) is a Baer ring if and only if \(R\) itself, regarded as a regular \(R\)-modu...
Saved in:
| Date: | 2018 |
|---|---|
| Main Authors: | , |
| Format: | Article |
| Language: | English |
| Published: |
Lugansk National Taras Shevchenko University
2018
|
| Subjects: | |
| Online Access: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/807 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematics| _version_ | 1856543071647301632 |
|---|---|
| author | Guo, Xiaojiang Shum, K. P. |
| author_facet | Guo, Xiaojiang Shum, K. P. |
| author_sort | Guo, Xiaojiang |
| baseUrl_str | |
| collection | OJS |
| datestamp_date | 2018-03-22T09:39:19Z |
| description | We consider Baer rings and Baer semisimple \(R\)-modules which are generalizations of semisimple modules. Several characterization theorems of Baer semisimple modules are obtained. In particular, we prove that a ring \(R\) is a Baer ring if and only if \(R\) itself, regarded as a regular \(R\)-module, is Baer semisimple. |
| first_indexed | 2025-12-02T15:48:12Z |
| format | Article |
| id | admjournalluguniveduua-article-807 |
| institution | Algebra and Discrete Mathematics |
| language | English |
| last_indexed | 2025-12-02T15:48:12Z |
| publishDate | 2018 |
| publisher | Lugansk National Taras Shevchenko University |
| record_format | ojs |
| spelling | admjournalluguniveduua-article-8072018-03-22T09:39:19Z Baer semisimple modules and Baer rings Guo, Xiaojiang Shum, K. P. Baer module; Baer semisimple module; perpetual submodule; Baer ring 16W60 We consider Baer rings and Baer semisimple \(R\)-modules which are generalizations of semisimple modules. Several characterization theorems of Baer semisimple modules are obtained. In particular, we prove that a ring \(R\) is a Baer ring if and only if \(R\) itself, regarded as a regular \(R\)-module, is Baer semisimple. Lugansk National Taras Shevchenko University 2018-03-22 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/807 Algebra and Discrete Mathematics; Vol 7, No 2 (2008) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/807/337 Copyright (c) 2018 Algebra and Discrete Mathematics |
| spellingShingle | Baer module Baer semisimple module perpetual submodule Baer ring 16W60 Guo, Xiaojiang Shum, K. P. Baer semisimple modules and Baer rings |
| title | Baer semisimple modules and Baer rings |
| title_full | Baer semisimple modules and Baer rings |
| title_fullStr | Baer semisimple modules and Baer rings |
| title_full_unstemmed | Baer semisimple modules and Baer rings |
| title_short | Baer semisimple modules and Baer rings |
| title_sort | baer semisimple modules and baer rings |
| topic | Baer module Baer semisimple module perpetual submodule Baer ring 16W60 |
| topic_facet | Baer module Baer semisimple module perpetual submodule Baer ring 16W60 |
| url | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/807 |
| work_keys_str_mv | AT guoxiaojiang baersemisimplemodulesandbaerrings AT shumkp baersemisimplemodulesandbaerrings |