Characterization of Chebyshev Numbers

Let \(T_n(x)\) be the degree-\(n\) Chebyshev polynomial of the first kind. It is known [1,13] that \(T_p(x) \equiv x^p \bmod{p}\), when \(p\) is an odd prime, and therefore, \(T_p(a) \equiv a \bmod{p}\) for all \(a\). Our main result is the characterization of composite numbers \(n\) satisfying the...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Jacobs, David Pokrass, Rayes, Mohamed O., Trevisan, Vilmar
Формат: Стаття
Мова:Англійська
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/809
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
_version_ 1856543041694728192
author Jacobs, David Pokrass
Rayes, Mohamed O.
Trevisan, Vilmar
author_facet Jacobs, David Pokrass
Rayes, Mohamed O.
Trevisan, Vilmar
author_sort Jacobs, David Pokrass
baseUrl_str
collection OJS
datestamp_date 2018-03-22T09:39:19Z
description Let \(T_n(x)\) be the degree-\(n\) Chebyshev polynomial of the first kind. It is known [1,13] that \(T_p(x) \equiv x^p \bmod{p}\), when \(p\) is an odd prime, and therefore, \(T_p(a) \equiv a \bmod{p}\) for all \(a\). Our main result is the characterization of composite numbers \(n\) satisfying the condition \(T_n(a) \equiv a \bmod{n}\), for any integer \(a\). We call these pseudoprimes  Chebyshev numbers, and show that \(n\) is a Chebyshev number if and only if \(n\) is odd, squarefree, and for each of its prime divisors \(p\), \(n \equiv \pm 1 \bmod p-1\) and \(n \equiv \pm 1 \bmod p+1\). Like Carmichael numbers, they must be the product of at least three primes. Our computations show there is one Chebyshev number less than \(10^{10}\), although it is reasonable to expect there are infinitely many. Our proofs are based on factorization and resultant properties of Chebyshev polynomials.
first_indexed 2025-12-02T15:41:03Z
format Article
id admjournalluguniveduua-article-809
institution Algebra and Discrete Mathematics
language English
last_indexed 2025-12-02T15:41:03Z
publishDate 2018
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-8092018-03-22T09:39:19Z Characterization of Chebyshev Numbers Jacobs, David Pokrass Rayes, Mohamed O. Trevisan, Vilmar Chebyshev polynomials, polynomial factorization, resultant, pseudoprimes, Carmichael numbers 11A07, 11Y35 Let \(T_n(x)\) be the degree-\(n\) Chebyshev polynomial of the first kind. It is known [1,13] that \(T_p(x) \equiv x^p \bmod{p}\), when \(p\) is an odd prime, and therefore, \(T_p(a) \equiv a \bmod{p}\) for all \(a\). Our main result is the characterization of composite numbers \(n\) satisfying the condition \(T_n(a) \equiv a \bmod{n}\), for any integer \(a\). We call these pseudoprimes  Chebyshev numbers, and show that \(n\) is a Chebyshev number if and only if \(n\) is odd, squarefree, and for each of its prime divisors \(p\), \(n \equiv \pm 1 \bmod p-1\) and \(n \equiv \pm 1 \bmod p+1\). Like Carmichael numbers, they must be the product of at least three primes. Our computations show there is one Chebyshev number less than \(10^{10}\), although it is reasonable to expect there are infinitely many. Our proofs are based on factorization and resultant properties of Chebyshev polynomials. Lugansk National Taras Shevchenko University 2018-03-22 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/809 Algebra and Discrete Mathematics; Vol 7, No 2 (2008) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/809/339 Copyright (c) 2018 Algebra and Discrete Mathematics
spellingShingle Chebyshev polynomials
polynomial factorization
resultant
pseudoprimes
Carmichael numbers
11A07
11Y35
Jacobs, David Pokrass
Rayes, Mohamed O.
Trevisan, Vilmar
Characterization of Chebyshev Numbers
title Characterization of Chebyshev Numbers
title_full Characterization of Chebyshev Numbers
title_fullStr Characterization of Chebyshev Numbers
title_full_unstemmed Characterization of Chebyshev Numbers
title_short Characterization of Chebyshev Numbers
title_sort characterization of chebyshev numbers
topic Chebyshev polynomials
polynomial factorization
resultant
pseudoprimes
Carmichael numbers
11A07
11Y35
topic_facet Chebyshev polynomials
polynomial factorization
resultant
pseudoprimes
Carmichael numbers
11A07
11Y35
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/809
work_keys_str_mv AT jacobsdavidpokrass characterizationofchebyshevnumbers
AT rayesmohamedo characterizationofchebyshevnumbers
AT trevisanvilmar characterizationofchebyshevnumbers