The generalized dihedral groups \(Dih(\mathbb{Z}^n)\) as groups generated by time-varying automata
Let \(\mathbb{Z}^n\) be a cubical lattice in the Euclidean space \(\mathbb{R}^n\). The generalized dihedral group \(Dih(\mathbb{Z}^n)\) is a topologically discrete group of isometries of \(\mathbb{Z}^n\) generated by translations and reflections in all points from \(\mathbb{Z}^n\). We study this...
Збережено в:
| Дата: | 2018 |
|---|---|
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/822 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| Резюме: | Let \(\mathbb{Z}^n\) be a cubical lattice in the Euclidean space \(\mathbb{R}^n\). The generalized dihedral group \(Dih(\mathbb{Z}^n)\) is a topologically discrete group of isometries of \(\mathbb{Z}^n\) generated by translations and reflections in all points from \(\mathbb{Z}^n\). We study this group as a group generated by a \((2n+2)\)-state time-varying automaton over the changing alphabet. The corresponding action on the set of words is described. |
|---|