On tame semigroups generated by idempotents with partial null multiplication

Let \(I\) be a finite set without \(0\) and \(J\) a subset in \(I\times I\)  without  diagonal elements \((i,i)\). We define  \(S(I,J)\) to be the semigroup with generators \(e_i\), where \(i\in I\cup 0\), and the following relations: \(e_0=0\);  \(e_i^2=e_i\) for any \(i\in I\); \(e_ie_j=0\) for an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Bondarenko, Vitaliy M., Tertychna, Olena M.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/824
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-824
record_format ojs
spelling admjournalluguniveduua-article-8242018-03-22T09:57:42Z On tame semigroups generated by idempotents with partial null multiplication Bondarenko, Vitaliy M. Tertychna, Olena M. semigroup, representation, tame type, the Tits form 15A, 16G Let \(I\) be a finite set without \(0\) and \(J\) a subset in \(I\times I\)  without  diagonal elements \((i,i)\). We define  \(S(I,J)\) to be the semigroup with generators \(e_i\), where \(i\in I\cup 0\), and the following relations: \(e_0=0\);  \(e_i^2=e_i\) for any \(i\in I\); \(e_ie_j=0\) for any  \((i,j)\in J\). In this paper we study finite-dimensional representations of such semigroups over a field \(k\). In particular, we describe all finite semigroups \(S(I,J)\) of tame representation type. Lugansk National Taras Shevchenko University 2018-03-22 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/824 Algebra and Discrete Mathematics; Vol 7, No 4 (2008) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/824/354 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-03-22T09:57:42Z
collection OJS
language English
topic semigroup
representation
tame type
the Tits form
15A
16G
spellingShingle semigroup
representation
tame type
the Tits form
15A
16G
Bondarenko, Vitaliy M.
Tertychna, Olena M.
On tame semigroups generated by idempotents with partial null multiplication
topic_facet semigroup
representation
tame type
the Tits form
15A
16G
format Article
author Bondarenko, Vitaliy M.
Tertychna, Olena M.
author_facet Bondarenko, Vitaliy M.
Tertychna, Olena M.
author_sort Bondarenko, Vitaliy M.
title On tame semigroups generated by idempotents with partial null multiplication
title_short On tame semigroups generated by idempotents with partial null multiplication
title_full On tame semigroups generated by idempotents with partial null multiplication
title_fullStr On tame semigroups generated by idempotents with partial null multiplication
title_full_unstemmed On tame semigroups generated by idempotents with partial null multiplication
title_sort on tame semigroups generated by idempotents with partial null multiplication
description Let \(I\) be a finite set without \(0\) and \(J\) a subset in \(I\times I\)  without  diagonal elements \((i,i)\). We define  \(S(I,J)\) to be the semigroup with generators \(e_i\), where \(i\in I\cup 0\), and the following relations: \(e_0=0\);  \(e_i^2=e_i\) for any \(i\in I\); \(e_ie_j=0\) for any  \((i,j)\in J\). In this paper we study finite-dimensional representations of such semigroups over a field \(k\). In particular, we describe all finite semigroups \(S(I,J)\) of tame representation type.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/824
work_keys_str_mv AT bondarenkovitaliym ontamesemigroupsgeneratedbyidempotentswithpartialnullmultiplication
AT tertychnaolenam ontamesemigroupsgeneratedbyidempotentswithpartialnullmultiplication
first_indexed 2025-12-02T15:43:24Z
last_indexed 2025-12-02T15:43:24Z
_version_ 1850411796515520512