On tame semigroups generated by idempotents with partial null multiplication
Let \(I\) be a finite set without \(0\) and \(J\) a subset in \(I\times I\) without diagonal elements \((i,i)\). We define \(S(I,J)\) to be the semigroup with generators \(e_i\), where \(i\in I\cup 0\), and the following relations: \(e_0=0\); \(e_i^2=e_i\) for any \(i\in I\); \(e_ie_j=0\) for an...
Збережено в:
| Дата: | 2018 |
|---|---|
| Автори: | , |
| Формат: | Стаття |
| Мова: | Англійська |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/824 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| _version_ | 1856543405398556672 |
|---|---|
| author | Bondarenko, Vitaliy M. Tertychna, Olena M. |
| author_facet | Bondarenko, Vitaliy M. Tertychna, Olena M. |
| author_sort | Bondarenko, Vitaliy M. |
| baseUrl_str | |
| collection | OJS |
| datestamp_date | 2018-03-22T09:57:42Z |
| description | Let \(I\) be a finite set without \(0\) and \(J\) a subset in \(I\times I\) without diagonal elements \((i,i)\). We define \(S(I,J)\) to be the semigroup with generators \(e_i\), where \(i\in I\cup 0\), and the following relations: \(e_0=0\); \(e_i^2=e_i\) for any \(i\in I\); \(e_ie_j=0\) for any \((i,j)\in J\). In this paper we study finite-dimensional representations of such semigroups over a field \(k\). In particular, we describe all finite semigroups \(S(I,J)\) of tame representation type. |
| first_indexed | 2025-12-02T15:43:24Z |
| format | Article |
| id | admjournalluguniveduua-article-824 |
| institution | Algebra and Discrete Mathematics |
| language | English |
| last_indexed | 2025-12-02T15:43:24Z |
| publishDate | 2018 |
| publisher | Lugansk National Taras Shevchenko University |
| record_format | ojs |
| spelling | admjournalluguniveduua-article-8242018-03-22T09:57:42Z On tame semigroups generated by idempotents with partial null multiplication Bondarenko, Vitaliy M. Tertychna, Olena M. semigroup, representation, tame type, the Tits form 15A, 16G Let \(I\) be a finite set without \(0\) and \(J\) a subset in \(I\times I\) without diagonal elements \((i,i)\). We define \(S(I,J)\) to be the semigroup with generators \(e_i\), where \(i\in I\cup 0\), and the following relations: \(e_0=0\); \(e_i^2=e_i\) for any \(i\in I\); \(e_ie_j=0\) for any \((i,j)\in J\). In this paper we study finite-dimensional representations of such semigroups over a field \(k\). In particular, we describe all finite semigroups \(S(I,J)\) of tame representation type. Lugansk National Taras Shevchenko University 2018-03-22 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/824 Algebra and Discrete Mathematics; Vol 7, No 4 (2008) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/824/354 Copyright (c) 2018 Algebra and Discrete Mathematics |
| spellingShingle | semigroup representation tame type the Tits form 15A 16G Bondarenko, Vitaliy M. Tertychna, Olena M. On tame semigroups generated by idempotents with partial null multiplication |
| title | On tame semigroups generated by idempotents with partial null multiplication |
| title_full | On tame semigroups generated by idempotents with partial null multiplication |
| title_fullStr | On tame semigroups generated by idempotents with partial null multiplication |
| title_full_unstemmed | On tame semigroups generated by idempotents with partial null multiplication |
| title_short | On tame semigroups generated by idempotents with partial null multiplication |
| title_sort | on tame semigroups generated by idempotents with partial null multiplication |
| topic | semigroup representation tame type the Tits form 15A 16G |
| topic_facet | semigroup representation tame type the Tits form 15A 16G |
| url | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/824 |
| work_keys_str_mv | AT bondarenkovitaliym ontamesemigroupsgeneratedbyidempotentswithpartialnullmultiplication AT tertychnaolenam ontamesemigroupsgeneratedbyidempotentswithpartialnullmultiplication |