On tame semigroups generated by idempotents with partial null multiplication

Let \(I\) be a finite set without \(0\) and \(J\) a subset in \(I\times I\)  without  diagonal elements \((i,i)\). We define  \(S(I,J)\) to be the semigroup with generators \(e_i\), where \(i\in I\cup 0\), and the following relations: \(e_0=0\);  \(e_i^2=e_i\) for any \(i\in I\); \(e_ie_j=0\) for an...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Bondarenko, Vitaliy M., Tertychna, Olena M.
Формат: Стаття
Мова:Англійська
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/824
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
_version_ 1856543405398556672
author Bondarenko, Vitaliy M.
Tertychna, Olena M.
author_facet Bondarenko, Vitaliy M.
Tertychna, Olena M.
author_sort Bondarenko, Vitaliy M.
baseUrl_str
collection OJS
datestamp_date 2018-03-22T09:57:42Z
description Let \(I\) be a finite set without \(0\) and \(J\) a subset in \(I\times I\)  without  diagonal elements \((i,i)\). We define  \(S(I,J)\) to be the semigroup with generators \(e_i\), where \(i\in I\cup 0\), and the following relations: \(e_0=0\);  \(e_i^2=e_i\) for any \(i\in I\); \(e_ie_j=0\) for any  \((i,j)\in J\). In this paper we study finite-dimensional representations of such semigroups over a field \(k\). In particular, we describe all finite semigroups \(S(I,J)\) of tame representation type.
first_indexed 2025-12-02T15:43:24Z
format Article
id admjournalluguniveduua-article-824
institution Algebra and Discrete Mathematics
language English
last_indexed 2025-12-02T15:43:24Z
publishDate 2018
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-8242018-03-22T09:57:42Z On tame semigroups generated by idempotents with partial null multiplication Bondarenko, Vitaliy M. Tertychna, Olena M. semigroup, representation, tame type, the Tits form 15A, 16G Let \(I\) be a finite set without \(0\) and \(J\) a subset in \(I\times I\)  without  diagonal elements \((i,i)\). We define  \(S(I,J)\) to be the semigroup with generators \(e_i\), where \(i\in I\cup 0\), and the following relations: \(e_0=0\);  \(e_i^2=e_i\) for any \(i\in I\); \(e_ie_j=0\) for any  \((i,j)\in J\). In this paper we study finite-dimensional representations of such semigroups over a field \(k\). In particular, we describe all finite semigroups \(S(I,J)\) of tame representation type. Lugansk National Taras Shevchenko University 2018-03-22 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/824 Algebra and Discrete Mathematics; Vol 7, No 4 (2008) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/824/354 Copyright (c) 2018 Algebra and Discrete Mathematics
spellingShingle semigroup
representation
tame type
the Tits form
15A
16G
Bondarenko, Vitaliy M.
Tertychna, Olena M.
On tame semigroups generated by idempotents with partial null multiplication
title On tame semigroups generated by idempotents with partial null multiplication
title_full On tame semigroups generated by idempotents with partial null multiplication
title_fullStr On tame semigroups generated by idempotents with partial null multiplication
title_full_unstemmed On tame semigroups generated by idempotents with partial null multiplication
title_short On tame semigroups generated by idempotents with partial null multiplication
title_sort on tame semigroups generated by idempotents with partial null multiplication
topic semigroup
representation
tame type
the Tits form
15A
16G
topic_facet semigroup
representation
tame type
the Tits form
15A
16G
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/824
work_keys_str_mv AT bondarenkovitaliym ontamesemigroupsgeneratedbyidempotentswithpartialnullmultiplication
AT tertychnaolenam ontamesemigroupsgeneratedbyidempotentswithpartialnullmultiplication