The Tits alternative for generalized triangle groups of type \((3,4,2)\)

A generalized triangle group is a group that can be presented in the form \( G = \langle {x,y}\ |{x^p=y^q=w(x,y)^r=1} \rangle \) where \(p,q,r\geq 2\) and \(w(x,y)\) is a cyclically reduced word of length at least \(2\) in the free product \(\mathbb{Z}_p*\mathbb{Z}_q= \langle {x,y}\ |{x^p=y^q=1}\ran...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Howie, James, Williams, Gerald
Формат: Стаття
Мова:Англійська
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/826
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
_version_ 1856543167921258496
author Howie, James
Williams, Gerald
author_facet Howie, James
Williams, Gerald
author_sort Howie, James
baseUrl_str
collection OJS
datestamp_date 2018-03-22T09:57:42Z
description A generalized triangle group is a group that can be presented in the form \( G = \langle {x,y}\ |{x^p=y^q=w(x,y)^r=1} \rangle \) where \(p,q,r\geq 2\) and \(w(x,y)\) is a cyclically reduced word of length at least \(2\) in the free product \(\mathbb{Z}_p*\mathbb{Z}_q= \langle {x,y}\ |{x^p=y^q=1}\rangle \). Rosenberger has conjectured that every generalized triangle group \(G\) satisfies the Tits alternative. It is known that the conjecture holds except possibly when the triple \((p,q,r)\) is one of \((2,3,2),\) \((2,4,2),\) \((2,5,2),\) \((3,3,2),\) \((3,4,2),\) or \((3,5,2)\). Building on a result of Benyash-Krivets and Barkovich from this journal, we show that the Tits alternative holds in the case \((p,q,r)=(3,4,2)\).
first_indexed 2026-02-08T07:58:07Z
format Article
id admjournalluguniveduua-article-826
institution Algebra and Discrete Mathematics
language English
last_indexed 2026-02-08T07:58:07Z
publishDate 2018
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-8262018-03-22T09:57:42Z The Tits alternative for generalized triangle groups of type \((3,4,2)\) Howie, James Williams, Gerald Generalized triangle group, Tits alternative, free subgroup 20F05, 20E05, 57M07 A generalized triangle group is a group that can be presented in the form \( G = \langle {x,y}\ |{x^p=y^q=w(x,y)^r=1} \rangle \) where \(p,q,r\geq 2\) and \(w(x,y)\) is a cyclically reduced word of length at least \(2\) in the free product \(\mathbb{Z}_p*\mathbb{Z}_q= \langle {x,y}\ |{x^p=y^q=1}\rangle \). Rosenberger has conjectured that every generalized triangle group \(G\) satisfies the Tits alternative. It is known that the conjecture holds except possibly when the triple \((p,q,r)\) is one of \((2,3,2),\) \((2,4,2),\) \((2,5,2),\) \((3,3,2),\) \((3,4,2),\) or \((3,5,2)\). Building on a result of Benyash-Krivets and Barkovich from this journal, we show that the Tits alternative holds in the case \((p,q,r)=(3,4,2)\). Lugansk National Taras Shevchenko University 2018-03-22 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/826 Algebra and Discrete Mathematics; Vol 7, No 4 (2008) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/826/356 Copyright (c) 2018 Algebra and Discrete Mathematics
spellingShingle Generalized triangle group
Tits alternative
free subgroup
20F05
20E05
57M07
Howie, James
Williams, Gerald
The Tits alternative for generalized triangle groups of type \((3,4,2)\)
title The Tits alternative for generalized triangle groups of type \((3,4,2)\)
title_full The Tits alternative for generalized triangle groups of type \((3,4,2)\)
title_fullStr The Tits alternative for generalized triangle groups of type \((3,4,2)\)
title_full_unstemmed The Tits alternative for generalized triangle groups of type \((3,4,2)\)
title_short The Tits alternative for generalized triangle groups of type \((3,4,2)\)
title_sort tits alternative for generalized triangle groups of type \((3,4,2)\)
topic Generalized triangle group
Tits alternative
free subgroup
20F05
20E05
57M07
topic_facet Generalized triangle group
Tits alternative
free subgroup
20F05
20E05
57M07
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/826
work_keys_str_mv AT howiejames thetitsalternativeforgeneralizedtrianglegroupsoftype342
AT williamsgerald thetitsalternativeforgeneralizedtrianglegroupsoftype342
AT howiejames titsalternativeforgeneralizedtrianglegroupsoftype342
AT williamsgerald titsalternativeforgeneralizedtrianglegroupsoftype342