Combinatorics of partial wreath power of finite inverse symmetric semigroup \(\mathcal{IS}_d\)
We study some combinatorial properties of \(\wr_p^k \mathcal{IS}_d\). In particular, we calculate its order, the number of idempotents and the number of \(\mathcal D\)-classes. For a given based graph \(\Gamma\subset T\) we compute the number of elements in its \(\mathcal D\)-class \(D_\Gamma\) and...
Збережено в:
| Дата: | 2018 |
|---|---|
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/834 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| id |
admjournalluguniveduua-article-834 |
|---|---|
| record_format |
ojs |
| spelling |
admjournalluguniveduua-article-8342018-03-21T11:52:32Z Combinatorics of partial wreath power of finite inverse symmetric semigroup \(\mathcal{IS}_d\) Kochubinska, Yevgeniya Wreath product, finite inverse symmetric semigroup, rooted tree, partial automorphism 20M18, 20M20, 05C05 We study some combinatorial properties of \(\wr_p^k \mathcal{IS}_d\). In particular, we calculate its order, the number of idempotents and the number of \(\mathcal D\)-classes. For a given based graph \(\Gamma\subset T\) we compute the number of elements in its \(\mathcal D\)-class \(D_\Gamma\) and the number of \(\mathcal R\)- and \(\mathcal L\)-classes in \(D_\Gamma\). Lugansk National Taras Shevchenko University 2018-03-21 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/834 Algebra and Discrete Mathematics; Vol 6, No 1 (2007) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/834/365 Copyright (c) 2018 Algebra and Discrete Mathematics |
| institution |
Algebra and Discrete Mathematics |
| baseUrl_str |
|
| datestamp_date |
2018-03-21T11:52:32Z |
| collection |
OJS |
| language |
English |
| topic |
Wreath product finite inverse symmetric semigroup rooted tree partial automorphism 20M18 20M20 05C05 |
| spellingShingle |
Wreath product finite inverse symmetric semigroup rooted tree partial automorphism 20M18 20M20 05C05 Kochubinska, Yevgeniya Combinatorics of partial wreath power of finite inverse symmetric semigroup \(\mathcal{IS}_d\) |
| topic_facet |
Wreath product finite inverse symmetric semigroup rooted tree partial automorphism 20M18 20M20 05C05 |
| format |
Article |
| author |
Kochubinska, Yevgeniya |
| author_facet |
Kochubinska, Yevgeniya |
| author_sort |
Kochubinska, Yevgeniya |
| title |
Combinatorics of partial wreath power of finite inverse symmetric semigroup \(\mathcal{IS}_d\) |
| title_short |
Combinatorics of partial wreath power of finite inverse symmetric semigroup \(\mathcal{IS}_d\) |
| title_full |
Combinatorics of partial wreath power of finite inverse symmetric semigroup \(\mathcal{IS}_d\) |
| title_fullStr |
Combinatorics of partial wreath power of finite inverse symmetric semigroup \(\mathcal{IS}_d\) |
| title_full_unstemmed |
Combinatorics of partial wreath power of finite inverse symmetric semigroup \(\mathcal{IS}_d\) |
| title_sort |
combinatorics of partial wreath power of finite inverse symmetric semigroup \(\mathcal{is}_d\) |
| description |
We study some combinatorial properties of \(\wr_p^k \mathcal{IS}_d\). In particular, we calculate its order, the number of idempotents and the number of \(\mathcal D\)-classes. For a given based graph \(\Gamma\subset T\) we compute the number of elements in its \(\mathcal D\)-class \(D_\Gamma\) and the number of \(\mathcal R\)- and \(\mathcal L\)-classes in \(D_\Gamma\). |
| publisher |
Lugansk National Taras Shevchenko University |
| publishDate |
2018 |
| url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/834 |
| work_keys_str_mv |
AT kochubinskayevgeniya combinatoricsofpartialwreathpoweroffiniteinversesymmetricsemigroupmathcalisd |
| first_indexed |
2025-12-02T15:46:44Z |
| last_indexed |
2025-12-02T15:46:44Z |
| _version_ |
1850412184870322176 |