Natural dualities for varieties generated by a set of subalgebras of a semi-primal algebra

The main contribution of this paper is the construction of a strong duality for the varieties generated by a set of subalgebras of a semi-primal algebra. We also obtain an axiomatization of the objects of the dual category and develop some algebraic consequences (description of the dual of the finit...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Mathonet, P., Niederkorn, P., Teheux, B.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/836
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-836
record_format ojs
spelling admjournalluguniveduua-article-8362018-03-21T11:52:32Z Natural dualities for varieties generated by a set of subalgebras of a semi-primal algebra Mathonet, P. Niederkorn, P. Teheux, B. MV-algebras, Natural duality, Semi-primal algebras 06D35; 08B The main contribution of this paper is the construction of a strong duality for the varieties generated by a set of subalgebras of a semi-primal algebra. We also obtain an axiomatization of the objects of the dual category and develop some algebraic consequences (description of the dual of the finite structures and algebras, construction of finitely generated free algebras,...). Eventually, we illustrate this work for the finitely generated varieties of MV-algebras. Lugansk National Taras Shevchenko University 2018-03-21 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/836 Algebra and Discrete Mathematics; Vol 6, No 1 (2007) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/836/367 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-03-21T11:52:32Z
collection OJS
language English
topic MV-algebras
Natural duality
Semi-primal algebras
06D35
08B
spellingShingle MV-algebras
Natural duality
Semi-primal algebras
06D35
08B
Mathonet, P.
Niederkorn, P.
Teheux, B.
Natural dualities for varieties generated by a set of subalgebras of a semi-primal algebra
topic_facet MV-algebras
Natural duality
Semi-primal algebras
06D35
08B
format Article
author Mathonet, P.
Niederkorn, P.
Teheux, B.
author_facet Mathonet, P.
Niederkorn, P.
Teheux, B.
author_sort Mathonet, P.
title Natural dualities for varieties generated by a set of subalgebras of a semi-primal algebra
title_short Natural dualities for varieties generated by a set of subalgebras of a semi-primal algebra
title_full Natural dualities for varieties generated by a set of subalgebras of a semi-primal algebra
title_fullStr Natural dualities for varieties generated by a set of subalgebras of a semi-primal algebra
title_full_unstemmed Natural dualities for varieties generated by a set of subalgebras of a semi-primal algebra
title_sort natural dualities for varieties generated by a set of subalgebras of a semi-primal algebra
description The main contribution of this paper is the construction of a strong duality for the varieties generated by a set of subalgebras of a semi-primal algebra. We also obtain an axiomatization of the objects of the dual category and develop some algebraic consequences (description of the dual of the finite structures and algebras, construction of finitely generated free algebras,...). Eventually, we illustrate this work for the finitely generated varieties of MV-algebras.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/836
work_keys_str_mv AT mathonetp naturaldualitiesforvarietiesgeneratedbyasetofsubalgebrasofasemiprimalalgebra
AT niederkornp naturaldualitiesforvarietiesgeneratedbyasetofsubalgebrasofasemiprimalalgebra
AT teheuxb naturaldualitiesforvarietiesgeneratedbyasetofsubalgebrasofasemiprimalalgebra
first_indexed 2025-12-02T15:32:54Z
last_indexed 2025-12-02T15:32:54Z
_version_ 1850411135247843328