R-S correspondence for the Hyper-octahedral group of type \(B_n\) - A different approach

In this paper we develop a Robinson Schensted algorithm for the hyperoctahedral group of type \(B_n\) on partitions of \((\frac{1}{2}r(r+1)+2n)\) whose \(2-\)core is \(\delta_r, \ r \geq 0\) where \(\delta_r\) is the partition with parts \((r,r-1,\ldots,0)\). We derive  some combinatorial properties...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Parvathi, M., Sivakumar, B., Tamilselvi, A.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/837
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-837
record_format ojs
spelling admjournalluguniveduua-article-8372018-03-21T11:52:32Z R-S correspondence for the Hyper-octahedral group of type \(B_n\) - A different approach Parvathi, M. Sivakumar, B. Tamilselvi, A. Robinson Schensted correspondence,Hyperoctahedral group of type \(B_n\), Domino tableau 05E10, 20C30 In this paper we develop a Robinson Schensted algorithm for the hyperoctahedral group of type \(B_n\) on partitions of \((\frac{1}{2}r(r+1)+2n)\) whose \(2-\)core is \(\delta_r, \ r \geq 0\) where \(\delta_r\) is the partition with parts \((r,r-1,\ldots,0)\). We derive  some combinatorial properties associated with this correspondence. Lugansk National Taras Shevchenko University 2018-03-21 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/837 Algebra and Discrete Mathematics; Vol 6, No 1 (2007) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/837/368 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-03-21T11:52:32Z
collection OJS
language English
topic Robinson Schensted correspondence,Hyperoctahedral group of type \(B_n\)
Domino tableau
05E10
20C30
spellingShingle Robinson Schensted correspondence,Hyperoctahedral group of type \(B_n\)
Domino tableau
05E10
20C30
Parvathi, M.
Sivakumar, B.
Tamilselvi, A.
R-S correspondence for the Hyper-octahedral group of type \(B_n\) - A different approach
topic_facet Robinson Schensted correspondence,Hyperoctahedral group of type \(B_n\)
Domino tableau
05E10
20C30
format Article
author Parvathi, M.
Sivakumar, B.
Tamilselvi, A.
author_facet Parvathi, M.
Sivakumar, B.
Tamilselvi, A.
author_sort Parvathi, M.
title R-S correspondence for the Hyper-octahedral group of type \(B_n\) - A different approach
title_short R-S correspondence for the Hyper-octahedral group of type \(B_n\) - A different approach
title_full R-S correspondence for the Hyper-octahedral group of type \(B_n\) - A different approach
title_fullStr R-S correspondence for the Hyper-octahedral group of type \(B_n\) - A different approach
title_full_unstemmed R-S correspondence for the Hyper-octahedral group of type \(B_n\) - A different approach
title_sort r-s correspondence for the hyper-octahedral group of type \(b_n\) - a different approach
description In this paper we develop a Robinson Schensted algorithm for the hyperoctahedral group of type \(B_n\) on partitions of \((\frac{1}{2}r(r+1)+2n)\) whose \(2-\)core is \(\delta_r, \ r \geq 0\) where \(\delta_r\) is the partition with parts \((r,r-1,\ldots,0)\). We derive  some combinatorial properties associated with this correspondence.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/837
work_keys_str_mv AT parvathim rscorrespondenceforthehyperoctahedralgroupoftypebnadifferentapproach
AT sivakumarb rscorrespondenceforthehyperoctahedralgroupoftypebnadifferentapproach
AT tamilselvia rscorrespondenceforthehyperoctahedralgroupoftypebnadifferentapproach
first_indexed 2025-12-02T15:28:08Z
last_indexed 2025-12-02T15:28:08Z
_version_ 1850411900869804033