On Sushchansky \(p\)-groups
We study Sushchansky \(p\)-groups introduced in [Sus79]. We recall the original definition and translate it into the language of automata groups. The original actions of Sushchansky groups on \(p\)-ary tree are not level-transitive and we describe their orbit trees. This allows us to simplify the de...
Збережено в:
| Дата: | 2018 |
|---|---|
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/841 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| Резюме: | We study Sushchansky \(p\)-groups introduced in [Sus79]. We recall the original definition and translate it into the language of automata groups. The original actions of Sushchansky groups on \(p\)-ary tree are not level-transitive and we describe their orbit trees. This allows us to simplify the definition and prove that these groups admit faithful level-transitive actions on the same tree. Certain branch structures in their self-similar closures are established. We provide the connection with, so-called, \(\mathsf{G}\) groups [BGS03] that shows that all Sushchansky groups have intermediate growth and allows to obtain an upper bound on their period growth functions. |
|---|