Nonstandard additively finite triangulated categories of Calabi-Yau dimension one in characteristic 3
We prove that there exist nonstandard \(K\)-linear triangulated categories with finitely many indecomposable objects and Calabi-Yau dimension one over an arbitrary algebraically closed field \(K\) of characteristic \(3\), using deformed preprojective algebras of generalized Dynkin type.
Збережено в:
| Дата: | 2018 |
|---|---|
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/855 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| Резюме: | We prove that there exist nonstandard \(K\)-linear triangulated categories with finitely many indecomposable objects and Calabi-Yau dimension one over an arbitrary algebraically closed field \(K\) of characteristic \(3\), using deformed preprojective algebras of generalized Dynkin type. |
|---|