Total global neighbourhood domination
A subset \(D\) of the vertex set of a connected graph \(G\) is called a total global neighbourhood dominating set (\(\mathrm{tgnd}\)-set) of \(G\) if and only if \(D\) is a total dominating set of \(G\) as well as \(G^{N}\), where \(G^{N}\) is the neighbourhood graph of \(G\). The total global neigh...
Saved in:
| Date: | 2018 |
|---|---|
| Main Authors: | , |
| Format: | Article |
| Language: | English |
| Published: |
Lugansk National Taras Shevchenko University
2018
|
| Subjects: | |
| Online Access: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/86 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematics| Summary: | A subset \(D\) of the vertex set of a connected graph \(G\) is called a total global neighbourhood dominating set (\(\mathrm{tgnd}\)-set) of \(G\) if and only if \(D\) is a total dominating set of \(G\) as well as \(G^{N}\), where \(G^{N}\) is the neighbourhood graph of \(G\). The total global neighbourhood domination number (\(\mathrm{tgnd}\)-number) is the minimum cardinality of a total global neighbourhood dominating set of \(G\) and is denoted by \(\gamma_{\mathrm{tgn}}(G)\). In this paper sharp bounds for \(\gamma_{\mathrm{tgn}}\) are obtained. Exact values of this number for paths and cycles are presented as well. The characterization result for a subset of the vertex set of \(G\) to be a total global neighbourhood dominating set for \(G\) is given and also characterized the graphs of order \(n(\geq 3)\) having \(\mathrm{tgnd}\)-numbers \(2, n - 1, n\). |
|---|