Uncountably many non-isomorphic nilpotent real \(n\)-Lie algebras

There are an uncountable number of non-isomorphic nilpotent real Lie algebras for every dimension greater than or equal to 7. We extend an old technique, which applies to Lie algebras of dimension greater than or equal to 10, to find corresponding results for \(n\)-Lie algebras.  In particular, for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Stitzinger, Ernest, Williams, Michael P.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/882
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-882
record_format ojs
spelling admjournalluguniveduua-article-8822018-03-21T06:53:57Z Uncountably many non-isomorphic nilpotent real \(n\)-Lie algebras Stitzinger, Ernest Williams, Michael P. \(n\)-Lie algebras, nilpotent, algebraically independent,transcendence degree 17A42 There are an uncountable number of non-isomorphic nilpotent real Lie algebras for every dimension greater than or equal to 7. We extend an old technique, which applies to Lie algebras of dimension greater than or equal to 10, to find corresponding results for \(n\)-Lie algebras.  In particular, for \(n \ge 6\), there are an uncountable number of non-isomorphic nilpotent real \(n\)-Lie algebras of dimension \(n+4\). Lugansk National Taras Shevchenko University 2018-03-21 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/882 Algebra and Discrete Mathematics; Vol 5, No 1 (2006) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/882/411 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-03-21T06:53:57Z
collection OJS
language English
topic \(n\)-Lie algebras
nilpotent
algebraically independent,transcendence degree
17A42
spellingShingle \(n\)-Lie algebras
nilpotent
algebraically independent,transcendence degree
17A42
Stitzinger, Ernest
Williams, Michael P.
Uncountably many non-isomorphic nilpotent real \(n\)-Lie algebras
topic_facet \(n\)-Lie algebras
nilpotent
algebraically independent,transcendence degree
17A42
format Article
author Stitzinger, Ernest
Williams, Michael P.
author_facet Stitzinger, Ernest
Williams, Michael P.
author_sort Stitzinger, Ernest
title Uncountably many non-isomorphic nilpotent real \(n\)-Lie algebras
title_short Uncountably many non-isomorphic nilpotent real \(n\)-Lie algebras
title_full Uncountably many non-isomorphic nilpotent real \(n\)-Lie algebras
title_fullStr Uncountably many non-isomorphic nilpotent real \(n\)-Lie algebras
title_full_unstemmed Uncountably many non-isomorphic nilpotent real \(n\)-Lie algebras
title_sort uncountably many non-isomorphic nilpotent real \(n\)-lie algebras
description There are an uncountable number of non-isomorphic nilpotent real Lie algebras for every dimension greater than or equal to 7. We extend an old technique, which applies to Lie algebras of dimension greater than or equal to 10, to find corresponding results for \(n\)-Lie algebras.  In particular, for \(n \ge 6\), there are an uncountable number of non-isomorphic nilpotent real \(n\)-Lie algebras of dimension \(n+4\).
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/882
work_keys_str_mv AT stitzingerernest uncountablymanynonisomorphicnilpotentrealnliealgebras
AT williamsmichaelp uncountablymanynonisomorphicnilpotentrealnliealgebras
first_indexed 2025-12-02T15:33:07Z
last_indexed 2025-12-02T15:33:07Z
_version_ 1850412104028258304