Uncountably many non-isomorphic nilpotent real \(n\)-Lie algebras
There are an uncountable number of non-isomorphic nilpotent real Lie algebras for every dimension greater than or equal to 7. We extend an old technique, which applies to Lie algebras of dimension greater than or equal to 10, to find corresponding results for \(n\)-Lie algebras. In particular, for...
Gespeichert in:
| Datum: | 2018 |
|---|---|
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Lugansk National Taras Shevchenko University
2018
|
| Schlagworte: | |
| Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/882 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematics| id |
admjournalluguniveduua-article-882 |
|---|---|
| record_format |
ojs |
| spelling |
admjournalluguniveduua-article-8822018-03-21T06:53:57Z Uncountably many non-isomorphic nilpotent real \(n\)-Lie algebras Stitzinger, Ernest Williams, Michael P. \(n\)-Lie algebras, nilpotent, algebraically independent,transcendence degree 17A42 There are an uncountable number of non-isomorphic nilpotent real Lie algebras for every dimension greater than or equal to 7. We extend an old technique, which applies to Lie algebras of dimension greater than or equal to 10, to find corresponding results for \(n\)-Lie algebras. In particular, for \(n \ge 6\), there are an uncountable number of non-isomorphic nilpotent real \(n\)-Lie algebras of dimension \(n+4\). Lugansk National Taras Shevchenko University 2018-03-21 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/882 Algebra and Discrete Mathematics; Vol 5, No 1 (2006) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/882/411 Copyright (c) 2018 Algebra and Discrete Mathematics |
| institution |
Algebra and Discrete Mathematics |
| baseUrl_str |
|
| datestamp_date |
2018-03-21T06:53:57Z |
| collection |
OJS |
| language |
English |
| topic |
\(n\)-Lie algebras nilpotent algebraically independent,transcendence degree 17A42 |
| spellingShingle |
\(n\)-Lie algebras nilpotent algebraically independent,transcendence degree 17A42 Stitzinger, Ernest Williams, Michael P. Uncountably many non-isomorphic nilpotent real \(n\)-Lie algebras |
| topic_facet |
\(n\)-Lie algebras nilpotent algebraically independent,transcendence degree 17A42 |
| format |
Article |
| author |
Stitzinger, Ernest Williams, Michael P. |
| author_facet |
Stitzinger, Ernest Williams, Michael P. |
| author_sort |
Stitzinger, Ernest |
| title |
Uncountably many non-isomorphic nilpotent real \(n\)-Lie algebras |
| title_short |
Uncountably many non-isomorphic nilpotent real \(n\)-Lie algebras |
| title_full |
Uncountably many non-isomorphic nilpotent real \(n\)-Lie algebras |
| title_fullStr |
Uncountably many non-isomorphic nilpotent real \(n\)-Lie algebras |
| title_full_unstemmed |
Uncountably many non-isomorphic nilpotent real \(n\)-Lie algebras |
| title_sort |
uncountably many non-isomorphic nilpotent real \(n\)-lie algebras |
| description |
There are an uncountable number of non-isomorphic nilpotent real Lie algebras for every dimension greater than or equal to 7. We extend an old technique, which applies to Lie algebras of dimension greater than or equal to 10, to find corresponding results for \(n\)-Lie algebras. In particular, for \(n \ge 6\), there are an uncountable number of non-isomorphic nilpotent real \(n\)-Lie algebras of dimension \(n+4\). |
| publisher |
Lugansk National Taras Shevchenko University |
| publishDate |
2018 |
| url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/882 |
| work_keys_str_mv |
AT stitzingerernest uncountablymanynonisomorphicnilpotentrealnliealgebras AT williamsmichaelp uncountablymanynonisomorphicnilpotentrealnliealgebras |
| first_indexed |
2025-12-02T15:33:07Z |
| last_indexed |
2025-12-02T15:33:07Z |
| _version_ |
1850412104028258304 |