Uncountably many non-isomorphic nilpotent real \(n\)-Lie algebras
There are an uncountable number of non-isomorphic nilpotent real Lie algebras for every dimension greater than or equal to 7. We extend an old technique, which applies to Lie algebras of dimension greater than or equal to 10, to find corresponding results for \(n\)-Lie algebras. In particular, for...
Gespeichert in:
| Datum: | 2018 |
|---|---|
| Hauptverfasser: | Stitzinger, Ernest, Williams, Michael P. |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Lugansk National Taras Shevchenko University
2018
|
| Schlagworte: | |
| Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/882 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete MathematicsÄhnliche Einträge
-
Uncountably many non-isomorphic nilpotent real \(n\)-Lie algebras
von: Stitzinger, Ernest, et al.
Veröffentlicht: (2018) -
Uncountably many non-isomorphic nilpotent real n-Lie algebras
von: Stitzinger, E., et al.
Veröffentlicht: (2006) -
Frattini theory for \(N\)-Lie algebras
von: Williams, Michael Peretzian
Veröffentlicht: (2018) -
Frattini theory for \(N\)-Lie algebras
von: Williams, Michael Peretzian
Veröffentlicht: (2018) -
On action of outer derivations on nilpotent ideals of Lie algebras
von: Maksimenko, Dmitriy V.
Veröffentlicht: (2018)