Weighted partially orderd sets of finite type

We define representations of weighted posets and construct for them reflection functors. Using this technique we prove that a weighted poset is of finite representation type if and only if its Tits form is weakly positive; then indecomposable representations are in one-to-one correspondence with the...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Drozd-Koroleva, Olena
Формат: Стаття
Мова:Англійська
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/887
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
_version_ 1856543322525401088
author Drozd-Koroleva, Olena
author_facet Drozd-Koroleva, Olena
author_sort Drozd-Koroleva, Olena
baseUrl_str
collection OJS
datestamp_date 2018-03-21T07:47:40Z
description We define representations of weighted posets and construct for them reflection functors. Using this technique we prove that a weighted poset is of finite representation type if and only if its Tits form is weakly positive; then indecomposable representations are in one-to-one correspondence with the positive roots of the Tits form.
first_indexed 2025-12-02T15:28:29Z
format Article
id admjournalluguniveduua-article-887
institution Algebra and Discrete Mathematics
language English
last_indexed 2025-12-02T15:28:29Z
publishDate 2018
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-8872018-03-21T07:47:40Z Weighted partially orderd sets of finite type Drozd-Koroleva, Olena weighted partially ordered sets, finite representation type, reflection functors, Tits form 16G20, 16G60 We define representations of weighted posets and construct for them reflection functors. Using this technique we prove that a weighted poset is of finite representation type if and only if its Tits form is weakly positive; then indecomposable representations are in one-to-one correspondence with the positive roots of the Tits form. Lugansk National Taras Shevchenko University 2018-03-21 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/887 Algebra and Discrete Mathematics; Vol 5, No 2 (2006) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/887/416 Copyright (c) 2018 Algebra and Discrete Mathematics
spellingShingle weighted partially ordered sets
finite representation type
reflection functors
Tits form
16G20
16G60
Drozd-Koroleva, Olena
Weighted partially orderd sets of finite type
title Weighted partially orderd sets of finite type
title_full Weighted partially orderd sets of finite type
title_fullStr Weighted partially orderd sets of finite type
title_full_unstemmed Weighted partially orderd sets of finite type
title_short Weighted partially orderd sets of finite type
title_sort weighted partially orderd sets of finite type
topic weighted partially ordered sets
finite representation type
reflection functors
Tits form
16G20
16G60
topic_facet weighted partially ordered sets
finite representation type
reflection functors
Tits form
16G20
16G60
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/887
work_keys_str_mv AT drozdkorolevaolena weightedpartiallyorderdsetsoffinitetype