A construction of dual box

Let \({\mathtt R}\) be a quasi-hereditary algebra, \({\mathscr F} (\Delta)\)  and \({\mathscr F}(\nabla)\)  its categories of good and cogood modules correspondingly. In [6] these categories were characterized as the categories of representations of some boxes \({\mathscr A}={\mathscr A}_{\Delta}\)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
1. Verfasser: Ovsienko, Serge
Format: Artikel
Sprache:Englisch
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/890
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
_version_ 1856543172117659648
author Ovsienko, Serge
author_facet Ovsienko, Serge
author_sort Ovsienko, Serge
baseUrl_str
collection OJS
datestamp_date 2018-03-21T07:47:47Z
description Let \({\mathtt R}\) be a quasi-hereditary algebra, \({\mathscr F} (\Delta)\)  and \({\mathscr F}(\nabla)\)  its categories of good and cogood modules correspondingly. In [6] these categories were characterized as the categories of representations of some boxes \({\mathscr A}={\mathscr A}_{\Delta}\) and \({\mathscr A}_{\nabla}\). These last are the box theory counterparts of Ringel duality ([8]). We present an implicit construction of the box \({\mathscr B}\) such that \({\mathscr B}-{\mathrm{mo\,}}\) is equivalent to \({\mathscr F}(\nabla)\).
first_indexed 2026-02-08T07:58:09Z
format Article
id admjournalluguniveduua-article-890
institution Algebra and Discrete Mathematics
language English
last_indexed 2026-02-08T07:58:09Z
publishDate 2018
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-8902018-03-21T07:47:47Z A construction of dual box Ovsienko, Serge box, derived category, differential graded category 16E30,16E35 Let \({\mathtt R}\) be a quasi-hereditary algebra, \({\mathscr F} (\Delta)\)  and \({\mathscr F}(\nabla)\)  its categories of good and cogood modules correspondingly. In [6] these categories were characterized as the categories of representations of some boxes \({\mathscr A}={\mathscr A}_{\Delta}\) and \({\mathscr A}_{\nabla}\). These last are the box theory counterparts of Ringel duality ([8]). We present an implicit construction of the box \({\mathscr B}\) such that \({\mathscr B}-{\mathrm{mo\,}}\) is equivalent to \({\mathscr F}(\nabla)\). Lugansk National Taras Shevchenko University 2018-03-21 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/890 Algebra and Discrete Mathematics; Vol 5, No 2 (2006) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/890/419 Copyright (c) 2018 Algebra and Discrete Mathematics
spellingShingle box
derived category
differential graded category
16E30,16E35
Ovsienko, Serge
A construction of dual box
title A construction of dual box
title_full A construction of dual box
title_fullStr A construction of dual box
title_full_unstemmed A construction of dual box
title_short A construction of dual box
title_sort construction of dual box
topic box
derived category
differential graded category
16E30,16E35
topic_facet box
derived category
differential graded category
16E30,16E35
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/890
work_keys_str_mv AT ovsienkoserge aconstructionofdualbox
AT ovsienkoserge constructionofdualbox