On \(\frak{F}\)-radicals of finite \(\pi\)-soluble groups
In this paper, we prove that for every local \(\pi\)-saturated Fitting class \({\cal F}\) with \(char ({\cal F})=\mathbb{P}\), the \({\cal F}\)-radical of every finite \(\pi\)-soluble groups \(G\) has the property: \(C_G(G_{\cal F})\subseteq G_{\cal F}\). From this, some well known results are follo...
Збережено в:
| Дата: | 2018 |
|---|---|
| Автори: | , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/897 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| id |
admjournalluguniveduua-article-897 |
|---|---|
| record_format |
ojs |
| spelling |
admjournalluguniveduua-article-8972018-03-21T07:07:28Z On \(\frak{F}\)-radicals of finite \(\pi\)-soluble groups Guo, Wenbin Liu, Xi Li, Baojun Finite group; \(\pi\)-soluble group; \({\cal F}\)-radical, Fitting class 20D10, 20D25 In this paper, we prove that for every local \(\pi\)-saturated Fitting class \({\cal F}\) with \(char ({\cal F})=\mathbb{P}\), the \({\cal F}\)-radical of every finite \(\pi\)-soluble groups \(G\) has the property: \(C_G(G_{\cal F})\subseteq G_{\cal F}\). From this, some well known results are followed and some new results are obtained. Lugansk National Taras Shevchenko University 2018-03-21 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/897 Algebra and Discrete Mathematics; Vol 5, No 3 (2006) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/897/426 Copyright (c) 2018 Algebra and Discrete Mathematics |
| institution |
Algebra and Discrete Mathematics |
| baseUrl_str |
|
| datestamp_date |
2018-03-21T07:07:28Z |
| collection |
OJS |
| language |
English |
| topic |
Finite group; \(\pi\)-soluble group; \({\cal F}\)-radical Fitting class 20D10 20D25 |
| spellingShingle |
Finite group; \(\pi\)-soluble group; \({\cal F}\)-radical Fitting class 20D10 20D25 Guo, Wenbin Liu, Xi Li, Baojun On \(\frak{F}\)-radicals of finite \(\pi\)-soluble groups |
| topic_facet |
Finite group; \(\pi\)-soluble group; \({\cal F}\)-radical Fitting class 20D10 20D25 |
| format |
Article |
| author |
Guo, Wenbin Liu, Xi Li, Baojun |
| author_facet |
Guo, Wenbin Liu, Xi Li, Baojun |
| author_sort |
Guo, Wenbin |
| title |
On \(\frak{F}\)-radicals of finite \(\pi\)-soluble groups |
| title_short |
On \(\frak{F}\)-radicals of finite \(\pi\)-soluble groups |
| title_full |
On \(\frak{F}\)-radicals of finite \(\pi\)-soluble groups |
| title_fullStr |
On \(\frak{F}\)-radicals of finite \(\pi\)-soluble groups |
| title_full_unstemmed |
On \(\frak{F}\)-radicals of finite \(\pi\)-soluble groups |
| title_sort |
on \(\frak{f}\)-radicals of finite \(\pi\)-soluble groups |
| description |
In this paper, we prove that for every local \(\pi\)-saturated Fitting class \({\cal F}\) with \(char ({\cal F})=\mathbb{P}\), the \({\cal F}\)-radical of every finite \(\pi\)-soluble groups \(G\) has the property: \(C_G(G_{\cal F})\subseteq G_{\cal F}\). From this, some well known results are followed and some new results are obtained. |
| publisher |
Lugansk National Taras Shevchenko University |
| publishDate |
2018 |
| url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/897 |
| work_keys_str_mv |
AT guowenbin onfrakfradicalsoffinitepisolublegroups AT liuxi onfrakfradicalsoffinitepisolublegroups AT libaojun onfrakfradicalsoffinitepisolublegroups |
| first_indexed |
2025-12-02T15:43:34Z |
| last_indexed |
2025-12-02T15:43:34Z |
| _version_ |
1850411806137253888 |