Arithmetic properties of exceptional lattice paths

For a fixed real number \(\rho>0\),  let \(L\) be an affine line of slope \(\rho^{-1}\) in \(\mathbb{R}^2\). We show that the closest approximation of \(L\) by a path \(P\) in \(\mathbb{Z}^2\) is unique, except in one case, up to integral translation. We study this exceptional case. For irrat...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Rump, Wolfgang
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/901
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-901
record_format ojs
spelling admjournalluguniveduua-article-9012018-03-21T07:07:28Z Arithmetic properties of exceptional lattice paths Rump, Wolfgang Lattice path, uniform enumeration, quasicrystal 05B30, 11B50; 52C35, 11A07 For a fixed real number \(\rho>0\),  let \(L\) be an affine line of slope \(\rho^{-1}\) in \(\mathbb{R}^2\). We show that the closest approximation of \(L\) by a path \(P\) in \(\mathbb{Z}^2\) is unique, except in one case, up to integral translation. We study this exceptional case. For irrational \(\rho\), the projection of \(P\) to \(L\) yields two quasicrystallographic tilings in the sense of Lunnon and Pleasants [5]. If \(\rho\) satisfies an equation \(x^2=mx+1\) with \(m\in\mathbb{Z}\), both quasicrystals are mapped to each other by a substitution rule. For rational \(\rho\), we characterize the periodic parts of \(P\) by geometric and arithmetic properties, and exhibit a relationship to the hereditary algebras \(H_{\rho}(K)\) over a field \(K\) introduced in a recent proof of a conjecture of Roiter. Lugansk National Taras Shevchenko University 2018-03-21 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/901 Algebra and Discrete Mathematics; Vol 5, No 3 (2006) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/901/430 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-03-21T07:07:28Z
collection OJS
language English
topic Lattice path
uniform enumeration
quasicrystal
05B30
11B50; 52C35
11A07
spellingShingle Lattice path
uniform enumeration
quasicrystal
05B30
11B50; 52C35
11A07
Rump, Wolfgang
Arithmetic properties of exceptional lattice paths
topic_facet Lattice path
uniform enumeration
quasicrystal
05B30
11B50; 52C35
11A07
format Article
author Rump, Wolfgang
author_facet Rump, Wolfgang
author_sort Rump, Wolfgang
title Arithmetic properties of exceptional lattice paths
title_short Arithmetic properties of exceptional lattice paths
title_full Arithmetic properties of exceptional lattice paths
title_fullStr Arithmetic properties of exceptional lattice paths
title_full_unstemmed Arithmetic properties of exceptional lattice paths
title_sort arithmetic properties of exceptional lattice paths
description For a fixed real number \(\rho>0\),  let \(L\) be an affine line of slope \(\rho^{-1}\) in \(\mathbb{R}^2\). We show that the closest approximation of \(L\) by a path \(P\) in \(\mathbb{Z}^2\) is unique, except in one case, up to integral translation. We study this exceptional case. For irrational \(\rho\), the projection of \(P\) to \(L\) yields two quasicrystallographic tilings in the sense of Lunnon and Pleasants [5]. If \(\rho\) satisfies an equation \(x^2=mx+1\) with \(m\in\mathbb{Z}\), both quasicrystals are mapped to each other by a substitution rule. For rational \(\rho\), we characterize the periodic parts of \(P\) by geometric and arithmetic properties, and exhibit a relationship to the hereditary algebras \(H_{\rho}(K)\) over a field \(K\) introduced in a recent proof of a conjecture of Roiter.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/901
work_keys_str_mv AT rumpwolfgang arithmeticpropertiesofexceptionallatticepaths
first_indexed 2025-12-02T15:28:35Z
last_indexed 2025-12-02T15:28:35Z
_version_ 1850411908530700288