Identities related to integer partitions and complete Bell polynomials

Using the (universal) Theorem for the integer partitions and the \(q\)-binomial Theorem, we give arithmetical and combinatorial identities for the complete Bell polynomials as generating functions for the number of partitions of a given integer into \(k\) parts and the number of partitions of \(n\)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2017
Hauptverfasser: Mihoubi, Miloud, Belbachir, Hacène
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2017
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/91
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-91
record_format ojs
spelling admjournalluguniveduua-article-912017-10-11T02:09:05Z Identities related to integer partitions and complete Bell polynomials Mihoubi, Miloud Belbachir, Hacène complete Bell polynomials, integer partitions, \(q\)-binomial Theorem 11P81, 05A17 Using the (universal) Theorem for the integer partitions and the \(q\)-binomial Theorem, we give arithmetical and combinatorial identities for the complete Bell polynomials as generating functions for the number of partitions of a given integer into \(k\) parts and the number of partitions of \(n\) into a given number of parts. Lugansk National Taras Shevchenko University 2017-10-07 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/91 Algebra and Discrete Mathematics; Vol 24, No 1 (2017) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/91/pdf Copyright (c) 2017 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2017-10-11T02:09:05Z
collection OJS
language English
topic complete Bell polynomials
integer partitions
\(q\)-binomial Theorem
11P81
05A17
spellingShingle complete Bell polynomials
integer partitions
\(q\)-binomial Theorem
11P81
05A17
Mihoubi, Miloud
Belbachir, Hacène
Identities related to integer partitions and complete Bell polynomials
topic_facet complete Bell polynomials
integer partitions
\(q\)-binomial Theorem
11P81
05A17
format Article
author Mihoubi, Miloud
Belbachir, Hacène
author_facet Mihoubi, Miloud
Belbachir, Hacène
author_sort Mihoubi, Miloud
title Identities related to integer partitions and complete Bell polynomials
title_short Identities related to integer partitions and complete Bell polynomials
title_full Identities related to integer partitions and complete Bell polynomials
title_fullStr Identities related to integer partitions and complete Bell polynomials
title_full_unstemmed Identities related to integer partitions and complete Bell polynomials
title_sort identities related to integer partitions and complete bell polynomials
description Using the (universal) Theorem for the integer partitions and the \(q\)-binomial Theorem, we give arithmetical and combinatorial identities for the complete Bell polynomials as generating functions for the number of partitions of a given integer into \(k\) parts and the number of partitions of \(n\) into a given number of parts.
publisher Lugansk National Taras Shevchenko University
publishDate 2017
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/91
work_keys_str_mv AT mihoubimiloud identitiesrelatedtointegerpartitionsandcompletebellpolynomials
AT belbachirhacene identitiesrelatedtointegerpartitionsandcompletebellpolynomials
first_indexed 2025-12-02T15:28:38Z
last_indexed 2025-12-02T15:28:38Z
_version_ 1850411909648482304