Miniversal deformations of chains of linear mappings
V.I.Arnold [Russian Math. Surveys, 26 (no. 2), 1971, pp. 29-43] gave a miniversal deformation of matrices of linear operators; that is, a simple canonical form, to which not only a given square matrix \(A\), but also the family of all matrices close to \(A\), can be reduced by similarity transformat...
Saved in:
| Date: | 2018 |
|---|---|
| Main Authors: | , , |
| Format: | Article |
| Language: | English |
| Published: |
Lugansk National Taras Shevchenko University
2018
|
| Subjects: | |
| Online Access: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/915 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematics| Summary: | V.I.Arnold [Russian Math. Surveys, 26 (no. 2), 1971, pp. 29-43] gave a miniversal deformation of matrices of linear operators; that is, a simple canonical form, to which not only a given square matrix \(A\), but also the family of all matrices close to \(A\), can be reduced by similarity transformations smoothly depending on the entries of matrices. We study miniversal deformations of quiver representations and obtain a miniversal deformation of matrices of chains of linear mappings \[ V_1 \,\frac{}{\qquad}\, V_2\,\frac{}{\qquad}\, \cdots \,\frac{}{\qquad}\, V_t\,, \] where all \(V_i\) are complex or real vector spaces and each line denotes \(\longrightarrow\) or \(\longleftarrow\). |
|---|