Color-detectors of hypergraphs

Let \(X\) be a set of cardinality \(k\), \(\mathcal{F}\) be a family of subsets of \(X\). We say that a cardinal \(\lambda, \lambda< k\), is a  color-detector of the hypergraph \(H=(X, \mathcal{F})\) if  card \(\chi(X)\leq \lambda\) for every coloring \(\chi: X\rightarrow k\) such that  card ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Protasov, I. V., Protasova, O. I.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/918
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-918
record_format ojs
spelling admjournalluguniveduua-article-9182018-03-21T07:18:38Z Color-detectors of hypergraphs Protasov, I. V. Protasova, O. I. hypergraph, color-detector, covering number 05C15 Let \(X\) be a set of cardinality \(k\), \(\mathcal{F}\) be a family of subsets of \(X\). We say that a cardinal \(\lambda, \lambda< k\), is a  color-detector of the hypergraph \(H=(X, \mathcal{F})\) if  card \(\chi(X)\leq \lambda\) for every coloring \(\chi: X\rightarrow k\) such that  card  \(\chi(F)\leq \lambda\) for every \(F\in \mathcal{F}\). We show that the color-detectors of \(H\) are tightly connected with the covering number \(cov (H)=\sup \{\alpha: \text{ any }  \alpha  \text{ points  of } X \text{ are contained  in  some }\ F\in \mathcal{F} \}\). In some cases we determine all of the color-detectors of \(H\) and their asymptotic counterparts. We put also some open questions. Lugansk National Taras Shevchenko University 2018-03-21 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/918 Algebra and Discrete Mathematics; Vol 4, No 1 (2005) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/918/447 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-03-21T07:18:38Z
collection OJS
language English
topic hypergraph
color-detector
covering number
05C15
spellingShingle hypergraph
color-detector
covering number
05C15
Protasov, I. V.
Protasova, O. I.
Color-detectors of hypergraphs
topic_facet hypergraph
color-detector
covering number
05C15
format Article
author Protasov, I. V.
Protasova, O. I.
author_facet Protasov, I. V.
Protasova, O. I.
author_sort Protasov, I. V.
title Color-detectors of hypergraphs
title_short Color-detectors of hypergraphs
title_full Color-detectors of hypergraphs
title_fullStr Color-detectors of hypergraphs
title_full_unstemmed Color-detectors of hypergraphs
title_sort color-detectors of hypergraphs
description Let \(X\) be a set of cardinality \(k\), \(\mathcal{F}\) be a family of subsets of \(X\). We say that a cardinal \(\lambda, \lambda< k\), is a  color-detector of the hypergraph \(H=(X, \mathcal{F})\) if  card \(\chi(X)\leq \lambda\) for every coloring \(\chi: X\rightarrow k\) such that  card  \(\chi(F)\leq \lambda\) for every \(F\in \mathcal{F}\). We show that the color-detectors of \(H\) are tightly connected with the covering number \(cov (H)=\sup \{\alpha: \text{ any }  \alpha  \text{ points  of } X \text{ are contained  in  some }\ F\in \mathcal{F} \}\). In some cases we determine all of the color-detectors of \(H\) and their asymptotic counterparts. We put also some open questions.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/918
work_keys_str_mv AT protasoviv colordetectorsofhypergraphs
AT protasovaoi colordetectorsofhypergraphs
first_indexed 2025-12-02T15:37:36Z
last_indexed 2025-12-02T15:37:36Z
_version_ 1850411431119290368