On the mean square of the Epstein zeta-function
We consider the second power moment of the Epstein zeta-function and construct the asymptotic formula in special case, when \(\varphi_{0}(u,v)=u^{2}+Av^{2}\), \(A>0\), \(A\equiv1,2(mod\,4)\) and \(\varphi_{0}(u,v)\) belongs to the one-class kind \(G_{0}\) of the quadratic forms of discriminan...
Gespeichert in:
| Datum: | 2018 |
|---|---|
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Lugansk National Taras Shevchenko University
2018
|
| Schlagworte: | |
| Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/920 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematics| id |
admjournalluguniveduua-article-920 |
|---|---|
| record_format |
ojs |
| spelling |
admjournalluguniveduua-article-9202018-03-21T07:18:38Z On the mean square of the Epstein zeta-function Savastru, O. V. Varbanets, P. D. Epstein zeta-function, approximate functional equation, asymptotic formula, second power moment 11N37, 11R42 We consider the second power moment of the Epstein zeta-function and construct the asymptotic formula in special case, when \(\varphi_{0}(u,v)=u^{2}+Av^{2}\), \(A>0\), \(A\equiv1,2(mod\,4)\) and \(\varphi_{0}(u,v)\) belongs to the one-class kind \(G_{0}\) of the quadratic forms of discriminant \(-4A\). Lugansk National Taras Shevchenko University 2018-03-21 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/920 Algebra and Discrete Mathematics; Vol 4, No 1 (2005) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/920/449 Copyright (c) 2018 Algebra and Discrete Mathematics |
| institution |
Algebra and Discrete Mathematics |
| baseUrl_str |
|
| datestamp_date |
2018-03-21T07:18:38Z |
| collection |
OJS |
| language |
English |
| topic |
Epstein zeta-function approximate functional equation asymptotic formula second power moment 11N37 11R42 |
| spellingShingle |
Epstein zeta-function approximate functional equation asymptotic formula second power moment 11N37 11R42 Savastru, O. V. Varbanets, P. D. On the mean square of the Epstein zeta-function |
| topic_facet |
Epstein zeta-function approximate functional equation asymptotic formula second power moment 11N37 11R42 |
| format |
Article |
| author |
Savastru, O. V. Varbanets, P. D. |
| author_facet |
Savastru, O. V. Varbanets, P. D. |
| author_sort |
Savastru, O. V. |
| title |
On the mean square of the Epstein zeta-function |
| title_short |
On the mean square of the Epstein zeta-function |
| title_full |
On the mean square of the Epstein zeta-function |
| title_fullStr |
On the mean square of the Epstein zeta-function |
| title_full_unstemmed |
On the mean square of the Epstein zeta-function |
| title_sort |
on the mean square of the epstein zeta-function |
| description |
We consider the second power moment of the Epstein zeta-function and construct the asymptotic formula in special case, when \(\varphi_{0}(u,v)=u^{2}+Av^{2}\), \(A>0\), \(A\equiv1,2(mod\,4)\) and \(\varphi_{0}(u,v)\) belongs to the one-class kind \(G_{0}\) of the quadratic forms of discriminant \(-4A\). |
| publisher |
Lugansk National Taras Shevchenko University |
| publishDate |
2018 |
| url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/920 |
| work_keys_str_mv |
AT savastruov onthemeansquareoftheepsteinzetafunction AT varbanetspd onthemeansquareoftheepsteinzetafunction |
| first_indexed |
2025-12-02T15:43:37Z |
| last_indexed |
2025-12-02T15:43:37Z |
| _version_ |
1850411809098432512 |