On the mean square of the Epstein zeta-function

We consider the second power moment of the Epstein zeta-function and construct the asymptotic formula in special case, when \(\varphi_{0}(u,v)=u^{2}+Av^{2}\), \(A>0\), \(A\equiv1,2(mod\,4)\) and \(\varphi_{0}(u,v)\) belongs to the one-class kind \(G_{0}\) of the quadratic forms of discriminan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Savastru, O. V., Varbanets, P. D.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/920
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-920
record_format ojs
spelling admjournalluguniveduua-article-9202018-03-21T07:18:38Z On the mean square of the Epstein zeta-function Savastru, O. V. Varbanets, P. D. Epstein zeta-function, approximate functional equation, asymptotic formula, second power moment 11N37, 11R42 We consider the second power moment of the Epstein zeta-function and construct the asymptotic formula in special case, when \(\varphi_{0}(u,v)=u^{2}+Av^{2}\), \(A>0\), \(A\equiv1,2(mod\,4)\) and \(\varphi_{0}(u,v)\) belongs to the one-class kind \(G_{0}\) of the quadratic forms of discriminant \(-4A\). Lugansk National Taras Shevchenko University 2018-03-21 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/920 Algebra and Discrete Mathematics; Vol 4, No 1 (2005) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/920/449 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-03-21T07:18:38Z
collection OJS
language English
topic Epstein zeta-function
approximate functional equation
asymptotic formula
second power moment
11N37
11R42
spellingShingle Epstein zeta-function
approximate functional equation
asymptotic formula
second power moment
11N37
11R42
Savastru, O. V.
Varbanets, P. D.
On the mean square of the Epstein zeta-function
topic_facet Epstein zeta-function
approximate functional equation
asymptotic formula
second power moment
11N37
11R42
format Article
author Savastru, O. V.
Varbanets, P. D.
author_facet Savastru, O. V.
Varbanets, P. D.
author_sort Savastru, O. V.
title On the mean square of the Epstein zeta-function
title_short On the mean square of the Epstein zeta-function
title_full On the mean square of the Epstein zeta-function
title_fullStr On the mean square of the Epstein zeta-function
title_full_unstemmed On the mean square of the Epstein zeta-function
title_sort on the mean square of the epstein zeta-function
description We consider the second power moment of the Epstein zeta-function and construct the asymptotic formula in special case, when \(\varphi_{0}(u,v)=u^{2}+Av^{2}\), \(A>0\), \(A\equiv1,2(mod\,4)\) and \(\varphi_{0}(u,v)\) belongs to the one-class kind \(G_{0}\) of the quadratic forms of discriminant \(-4A\).
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/920
work_keys_str_mv AT savastruov onthemeansquareoftheepsteinzetafunction
AT varbanetspd onthemeansquareoftheepsteinzetafunction
first_indexed 2025-12-02T15:43:37Z
last_indexed 2025-12-02T15:43:37Z
_version_ 1850411809098432512