On the mean square of the Epstein zeta-function
We consider the second power moment of the Epstein zeta-function and construct the asymptotic formula in special case, when \(\varphi_{0}(u,v)=u^{2}+Av^{2}\), \(A>0\), \(A\equiv1,2(mod\,4)\) and \(\varphi_{0}(u,v)\) belongs to the one-class kind \(G_{0}\) of the quadratic forms of discriminan...
Saved in:
| Date: | 2018 |
|---|---|
| Main Authors: | , |
| Format: | Article |
| Language: | English |
| Published: |
Lugansk National Taras Shevchenko University
2018
|
| Subjects: | |
| Online Access: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/920 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematics| _version_ | 1856543410164334592 |
|---|---|
| author | Savastru, O. V. Varbanets, P. D. |
| author_facet | Savastru, O. V. Varbanets, P. D. |
| author_sort | Savastru, O. V. |
| baseUrl_str | |
| collection | OJS |
| datestamp_date | 2018-03-21T07:18:38Z |
| description | We consider the second power moment of the Epstein zeta-function and construct the asymptotic formula in special case, when \(\varphi_{0}(u,v)=u^{2}+Av^{2}\), \(A>0\), \(A\equiv1,2(mod\,4)\) and \(\varphi_{0}(u,v)\) belongs to the one-class kind \(G_{0}\) of the quadratic forms of discriminant \(-4A\). |
| first_indexed | 2025-12-02T15:43:37Z |
| format | Article |
| id | admjournalluguniveduua-article-920 |
| institution | Algebra and Discrete Mathematics |
| language | English |
| last_indexed | 2025-12-02T15:43:37Z |
| publishDate | 2018 |
| publisher | Lugansk National Taras Shevchenko University |
| record_format | ojs |
| spelling | admjournalluguniveduua-article-9202018-03-21T07:18:38Z On the mean square of the Epstein zeta-function Savastru, O. V. Varbanets, P. D. Epstein zeta-function, approximate functional equation, asymptotic formula, second power moment 11N37, 11R42 We consider the second power moment of the Epstein zeta-function and construct the asymptotic formula in special case, when \(\varphi_{0}(u,v)=u^{2}+Av^{2}\), \(A>0\), \(A\equiv1,2(mod\,4)\) and \(\varphi_{0}(u,v)\) belongs to the one-class kind \(G_{0}\) of the quadratic forms of discriminant \(-4A\). Lugansk National Taras Shevchenko University 2018-03-21 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/920 Algebra and Discrete Mathematics; Vol 4, No 1 (2005) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/920/449 Copyright (c) 2018 Algebra and Discrete Mathematics |
| spellingShingle | Epstein zeta-function approximate functional equation asymptotic formula second power moment 11N37 11R42 Savastru, O. V. Varbanets, P. D. On the mean square of the Epstein zeta-function |
| title | On the mean square of the Epstein zeta-function |
| title_full | On the mean square of the Epstein zeta-function |
| title_fullStr | On the mean square of the Epstein zeta-function |
| title_full_unstemmed | On the mean square of the Epstein zeta-function |
| title_short | On the mean square of the Epstein zeta-function |
| title_sort | on the mean square of the epstein zeta-function |
| topic | Epstein zeta-function approximate functional equation asymptotic formula second power moment 11N37 11R42 |
| topic_facet | Epstein zeta-function approximate functional equation asymptotic formula second power moment 11N37 11R42 |
| url | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/920 |
| work_keys_str_mv | AT savastruov onthemeansquareoftheepsteinzetafunction AT varbanetspd onthemeansquareoftheepsteinzetafunction |