On square-Hamiltonian graphs
A finite connected graph \(G\) is called square-Hamiltonian if \(G^{2}\) is Hamiltonian. We prove that any join of the family of Hamiltonian graphs by tree is square-Hamiltonian. Applying this statement we show that the line graph and any round-about reconstruction of an arbitrary finite connected g...
Збережено в:
| Дата: | 2018 |
|---|---|
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/928 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| id |
admjournalluguniveduua-article-928 |
|---|---|
| record_format |
ojs |
| spelling |
admjournalluguniveduua-article-9282018-03-21T06:47:49Z On square-Hamiltonian graphs Protasova, K. D. square-Hamiltonian graphs, join of graphs, line graph, round-about reconstruction 05C45 A finite connected graph \(G\) is called square-Hamiltonian if \(G^{2}\) is Hamiltonian. We prove that any join of the family of Hamiltonian graphs by tree is square-Hamiltonian. Applying this statement we show that the line graph and any round-about reconstruction of an arbitrary finite connected graph is square-Hamiltonian. Lugansk National Taras Shevchenko University 2018-03-21 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/928 Algebra and Discrete Mathematics; Vol 4, No 3 (2005) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/928/457 Copyright (c) 2018 Algebra and Discrete Mathematics |
| institution |
Algebra and Discrete Mathematics |
| baseUrl_str |
|
| datestamp_date |
2018-03-21T06:47:49Z |
| collection |
OJS |
| language |
English |
| topic |
square-Hamiltonian graphs join of graphs line graph round-about reconstruction 05C45 |
| spellingShingle |
square-Hamiltonian graphs join of graphs line graph round-about reconstruction 05C45 Protasova, K. D. On square-Hamiltonian graphs |
| topic_facet |
square-Hamiltonian graphs join of graphs line graph round-about reconstruction 05C45 |
| format |
Article |
| author |
Protasova, K. D. |
| author_facet |
Protasova, K. D. |
| author_sort |
Protasova, K. D. |
| title |
On square-Hamiltonian graphs |
| title_short |
On square-Hamiltonian graphs |
| title_full |
On square-Hamiltonian graphs |
| title_fullStr |
On square-Hamiltonian graphs |
| title_full_unstemmed |
On square-Hamiltonian graphs |
| title_sort |
on square-hamiltonian graphs |
| description |
A finite connected graph \(G\) is called square-Hamiltonian if \(G^{2}\) is Hamiltonian. We prove that any join of the family of Hamiltonian graphs by tree is square-Hamiltonian. Applying this statement we show that the line graph and any round-about reconstruction of an arbitrary finite connected graph is square-Hamiltonian. |
| publisher |
Lugansk National Taras Shevchenko University |
| publishDate |
2018 |
| url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/928 |
| work_keys_str_mv |
AT protasovakd onsquarehamiltoniangraphs |
| first_indexed |
2025-12-02T15:50:30Z |
| last_indexed |
2025-12-02T15:50:30Z |
| _version_ |
1850412243228819456 |