On square-Hamiltonian graphs

A finite connected graph \(G\) is called square-Hamiltonian if \(G^{2}\) is Hamiltonian. We prove that any join of the family of Hamiltonian graphs by tree is square-Hamiltonian. Applying this statement we show that the line graph and any round-about reconstruction of an arbitrary finite connected g...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Protasova, K. D.
Формат: Стаття
Мова:Англійська
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/928
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
_version_ 1856543075010084864
author Protasova, K. D.
author_facet Protasova, K. D.
author_sort Protasova, K. D.
baseUrl_str
collection OJS
datestamp_date 2018-03-21T06:47:49Z
description A finite connected graph \(G\) is called square-Hamiltonian if \(G^{2}\) is Hamiltonian. We prove that any join of the family of Hamiltonian graphs by tree is square-Hamiltonian. Applying this statement we show that the line graph and any round-about reconstruction of an arbitrary finite connected graph is square-Hamiltonian.
first_indexed 2025-12-02T15:50:30Z
format Article
id admjournalluguniveduua-article-928
institution Algebra and Discrete Mathematics
language English
last_indexed 2025-12-02T15:50:30Z
publishDate 2018
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-9282018-03-21T06:47:49Z On square-Hamiltonian graphs Protasova, K. D. square-Hamiltonian graphs, join of graphs, line graph, round-about reconstruction 05C45 A finite connected graph \(G\) is called square-Hamiltonian if \(G^{2}\) is Hamiltonian. We prove that any join of the family of Hamiltonian graphs by tree is square-Hamiltonian. Applying this statement we show that the line graph and any round-about reconstruction of an arbitrary finite connected graph is square-Hamiltonian. Lugansk National Taras Shevchenko University 2018-03-21 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/928 Algebra and Discrete Mathematics; Vol 4, No 3 (2005) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/928/457 Copyright (c) 2018 Algebra and Discrete Mathematics
spellingShingle square-Hamiltonian graphs
join of graphs
line graph
round-about reconstruction
05C45
Protasova, K. D.
On square-Hamiltonian graphs
title On square-Hamiltonian graphs
title_full On square-Hamiltonian graphs
title_fullStr On square-Hamiltonian graphs
title_full_unstemmed On square-Hamiltonian graphs
title_short On square-Hamiltonian graphs
title_sort on square-hamiltonian graphs
topic square-Hamiltonian graphs
join of graphs
line graph
round-about reconstruction
05C45
topic_facet square-Hamiltonian graphs
join of graphs
line graph
round-about reconstruction
05C45
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/928
work_keys_str_mv AT protasovakd onsquarehamiltoniangraphs