On square-Hamiltonian graphs
A finite connected graph \(G\) is called square-Hamiltonian if \(G^{2}\) is Hamiltonian. We prove that any join of the family of Hamiltonian graphs by tree is square-Hamiltonian. Applying this statement we show that the line graph and any round-about reconstruction of an arbitrary finite connected g...
Збережено в:
| Дата: | 2018 |
|---|---|
| Автор: | |
| Формат: | Стаття |
| Мова: | Англійська |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/928 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| _version_ | 1856543075010084864 |
|---|---|
| author | Protasova, K. D. |
| author_facet | Protasova, K. D. |
| author_sort | Protasova, K. D. |
| baseUrl_str | |
| collection | OJS |
| datestamp_date | 2018-03-21T06:47:49Z |
| description | A finite connected graph \(G\) is called square-Hamiltonian if \(G^{2}\) is Hamiltonian. We prove that any join of the family of Hamiltonian graphs by tree is square-Hamiltonian. Applying this statement we show that the line graph and any round-about reconstruction of an arbitrary finite connected graph is square-Hamiltonian. |
| first_indexed | 2025-12-02T15:50:30Z |
| format | Article |
| id | admjournalluguniveduua-article-928 |
| institution | Algebra and Discrete Mathematics |
| language | English |
| last_indexed | 2025-12-02T15:50:30Z |
| publishDate | 2018 |
| publisher | Lugansk National Taras Shevchenko University |
| record_format | ojs |
| spelling | admjournalluguniveduua-article-9282018-03-21T06:47:49Z On square-Hamiltonian graphs Protasova, K. D. square-Hamiltonian graphs, join of graphs, line graph, round-about reconstruction 05C45 A finite connected graph \(G\) is called square-Hamiltonian if \(G^{2}\) is Hamiltonian. We prove that any join of the family of Hamiltonian graphs by tree is square-Hamiltonian. Applying this statement we show that the line graph and any round-about reconstruction of an arbitrary finite connected graph is square-Hamiltonian. Lugansk National Taras Shevchenko University 2018-03-21 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/928 Algebra and Discrete Mathematics; Vol 4, No 3 (2005) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/928/457 Copyright (c) 2018 Algebra and Discrete Mathematics |
| spellingShingle | square-Hamiltonian graphs join of graphs line graph round-about reconstruction 05C45 Protasova, K. D. On square-Hamiltonian graphs |
| title | On square-Hamiltonian graphs |
| title_full | On square-Hamiltonian graphs |
| title_fullStr | On square-Hamiltonian graphs |
| title_full_unstemmed | On square-Hamiltonian graphs |
| title_short | On square-Hamiltonian graphs |
| title_sort | on square-hamiltonian graphs |
| topic | square-Hamiltonian graphs join of graphs line graph round-about reconstruction 05C45 |
| topic_facet | square-Hamiltonian graphs join of graphs line graph round-about reconstruction 05C45 |
| url | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/928 |
| work_keys_str_mv | AT protasovakd onsquarehamiltoniangraphs |