On bounded \(m\)-reducibilities

Conditions for classes \({\mathfrak F}^1,{\mathfrak F}^0\) of non-decreasing total one-place arithmetic functions to define reducibility   \(\leq_m[^{{\mathfrak R}^1}_{{\mathfrak R}^0}]\leftrightharpoons\{(A,B)|A,B\subseteq\mathbb N\ \&\ (\exists \mbox{ r.f. }\ h) (\exists f_1\in{\mathfrak F...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Belyaev, Vladimir N.
Формат: Стаття
Мова:Англійська
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/932
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
_version_ 1856543277566656512
author Belyaev, Vladimir N.
author_facet Belyaev, Vladimir N.
author_sort Belyaev, Vladimir N.
baseUrl_str
collection OJS
datestamp_date 2018-03-21T06:34:59Z
description Conditions for classes \({\mathfrak F}^1,{\mathfrak F}^0\) of non-decreasing total one-place arithmetic functions to define reducibility   \(\leq_m[^{{\mathfrak R}^1}_{{\mathfrak R}^0}]\leftrightharpoons\{(A,B)|A,B\subseteq\mathbb N\ \&\ (\exists \mbox{ r.f. }\ h) (\exists f_1\in{\mathfrak F}^1)(\exists f_0\in{\mathfrak F}^0) \) \([A\le_m^h\,B\ \&\ f_0\unlhd h\unlhd f_1]\}\) where \(k\unlhd l\) means that function \(l\) majors function \(k\) almost everywhere are studied. It is proved that the system of these reducibilities is highly ramified, and examples are constructed which differ drastically \(\leq_m[^{{\mathfrak R}^1}_{{\mathfrak R}^0}]\) from the standard m-reducibility  with respect to systems of degrees. Indecomposable and recursive degrees are considered.
first_indexed 2025-12-02T15:33:24Z
format Article
id admjournalluguniveduua-article-932
institution Algebra and Discrete Mathematics
language English
last_indexed 2025-12-02T15:33:24Z
publishDate 2018
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-9322018-03-21T06:34:59Z On bounded \(m\)-reducibilities Belyaev, Vladimir N. bounded reducibilities, degrees of unsolvability, singular reducibility, cylinder, indecomposable degree 03D20, 03D25, 03D30 Conditions for classes \({\mathfrak F}^1,{\mathfrak F}^0\) of non-decreasing total one-place arithmetic functions to define reducibility   \(\leq_m[^{{\mathfrak R}^1}_{{\mathfrak R}^0}]\leftrightharpoons\{(A,B)|A,B\subseteq\mathbb N\ \&\ (\exists \mbox{ r.f. }\ h) (\exists f_1\in{\mathfrak F}^1)(\exists f_0\in{\mathfrak F}^0) \) \([A\le_m^h\,B\ \&\ f_0\unlhd h\unlhd f_1]\}\) where \(k\unlhd l\) means that function \(l\) majors function \(k\) almost everywhere are studied. It is proved that the system of these reducibilities is highly ramified, and examples are constructed which differ drastically \(\leq_m[^{{\mathfrak R}^1}_{{\mathfrak R}^0}]\) from the standard m-reducibility  with respect to systems of degrees. Indecomposable and recursive degrees are considered. Lugansk National Taras Shevchenko University 2018-03-21 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/932 Algebra and Discrete Mathematics; Vol 4, No 2 (2005) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/932/461 Copyright (c) 2018 Algebra and Discrete Mathematics
spellingShingle bounded reducibilities
degrees of unsolvability
singular reducibility
cylinder
indecomposable degree
03D20
03D25
03D30
Belyaev, Vladimir N.
On bounded \(m\)-reducibilities
title On bounded \(m\)-reducibilities
title_full On bounded \(m\)-reducibilities
title_fullStr On bounded \(m\)-reducibilities
title_full_unstemmed On bounded \(m\)-reducibilities
title_short On bounded \(m\)-reducibilities
title_sort on bounded \(m\)-reducibilities
topic bounded reducibilities
degrees of unsolvability
singular reducibility
cylinder
indecomposable degree
03D20
03D25
03D30
topic_facet bounded reducibilities
degrees of unsolvability
singular reducibility
cylinder
indecomposable degree
03D20
03D25
03D30
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/932
work_keys_str_mv AT belyaevvladimirn onboundedmreducibilities