Action type geometrical equivalence of representations of groups

In the paper we prove (Theorem 8.1) that there exists a continuum of non isomorphic simple modules over \(KF_{2}\) , where \( F_{2}\)  is a free group with \(2\)  generators (compare with [Ca] where a continuum of non isomorphic simple \(2\)-generated groups is constructed). Using this fact we give...

Full description

Saved in:
Bibliographic Details
Date:2018
Main Authors: Plotkin, B., Tsurkov, A.
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2018
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/945
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
_version_ 1856543175347273728
author Plotkin, B.
Tsurkov, A.
author_facet Plotkin, B.
Tsurkov, A.
author_sort Plotkin, B.
baseUrl_str
collection OJS
datestamp_date 2018-03-21T06:49:56Z
description In the paper we prove (Theorem 8.1) that there exists a continuum of non isomorphic simple modules over \(KF_{2}\) , where \( F_{2}\)  is a free group with \(2\)  generators (compare with [Ca] where a continuum of non isomorphic simple \(2\)-generated groups is constructed). Using this fact we give an example of a non action type logically Noetherian representation (Section 9).
first_indexed 2025-12-02T15:37:44Z
format Article
id admjournalluguniveduua-article-945
institution Algebra and Discrete Mathematics
language English
last_indexed 2025-12-02T15:37:44Z
publishDate 2018
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-9452018-03-21T06:49:56Z Action type geometrical equivalence of representations of groups Plotkin, B. Tsurkov, A. In the paper we prove (Theorem 8.1) that there exists a continuum of non isomorphic simple modules over \(KF_{2}\) , where \( F_{2}\)  is a free group with \(2\)  generators (compare with [Ca] where a continuum of non isomorphic simple \(2\)-generated groups is constructed). Using this fact we give an example of a non action type logically Noetherian representation (Section 9). Lugansk National Taras Shevchenko University 2018-03-21 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/945 Algebra and Discrete Mathematics; Vol 4, No 4 (2005) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/945/474 Copyright (c) 2018 Algebra and Discrete Mathematics
spellingShingle

Plotkin, B.
Tsurkov, A.
Action type geometrical equivalence of representations of groups
title Action type geometrical equivalence of representations of groups
title_full Action type geometrical equivalence of representations of groups
title_fullStr Action type geometrical equivalence of representations of groups
title_full_unstemmed Action type geometrical equivalence of representations of groups
title_short Action type geometrical equivalence of representations of groups
title_sort action type geometrical equivalence of representations of groups
topic

topic_facet

url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/945
work_keys_str_mv AT plotkinb actiontypegeometricalequivalenceofrepresentationsofgroups
AT tsurkova actiontypegeometricalequivalenceofrepresentationsofgroups