On intersections of normal subgroups in free groups

Let \(N_1\) (respectively \(N_2\)) be a normal closure of a set \(R_1=\{ u_i \}\) (respectively \(R_2=\{ v_j \}\)) of cyclically reduced words of the free group \(F(A)\). In the paper we consider geometric conditions on \(R_1\) and \(R_2\) for \(N_1\cap N_2=[N_1,N_2].\) In particular, it turns out t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
1. Verfasser: Kulikova, O. V.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/952
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-952
record_format ojs
spelling admjournalluguniveduua-article-9522018-05-13T06:43:21Z On intersections of normal subgroups in free groups Kulikova, O. V. normal closure of words in free groups, presentations of groups, pictures, mutual commutants, intersection of groups, aspherisity, small cancellation conditions 20F05, 20F06 Let \(N_1\) (respectively \(N_2\)) be a normal closure of a set \(R_1=\{ u_i \}\) (respectively \(R_2=\{ v_j \}\)) of cyclically reduced words of the free group \(F(A)\). In the paper we consider geometric conditions on \(R_1\) and \(R_2\) for \(N_1\cap N_2=[N_1,N_2].\) In particular, it turns out that if a presentation \(<A\, \mid R_1,R_2>\)  is aspherical (for example, it satisfies small cancellation conditions \(C(p)\& T(q)\) with \(1/p+1/q=1/2\)), then the equality \(N_1\cap N_2=[N_1,N_2]\) holds. Lugansk National Taras Shevchenko University 2018-05-13 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/952 Algebra and Discrete Mathematics; Vol 2, No 1 (2003) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/952/481 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-05-13T06:43:21Z
collection OJS
language English
topic normal closure of words in free groups
presentations of groups
pictures
mutual commutants
intersection of groups
aspherisity
small cancellation conditions
20F05
20F06
spellingShingle normal closure of words in free groups
presentations of groups
pictures
mutual commutants
intersection of groups
aspherisity
small cancellation conditions
20F05
20F06
Kulikova, O. V.
On intersections of normal subgroups in free groups
topic_facet normal closure of words in free groups
presentations of groups
pictures
mutual commutants
intersection of groups
aspherisity
small cancellation conditions
20F05
20F06
format Article
author Kulikova, O. V.
author_facet Kulikova, O. V.
author_sort Kulikova, O. V.
title On intersections of normal subgroups in free groups
title_short On intersections of normal subgroups in free groups
title_full On intersections of normal subgroups in free groups
title_fullStr On intersections of normal subgroups in free groups
title_full_unstemmed On intersections of normal subgroups in free groups
title_sort on intersections of normal subgroups in free groups
description Let \(N_1\) (respectively \(N_2\)) be a normal closure of a set \(R_1=\{ u_i \}\) (respectively \(R_2=\{ v_j \}\)) of cyclically reduced words of the free group \(F(A)\). In the paper we consider geometric conditions on \(R_1\) and \(R_2\) for \(N_1\cap N_2=[N_1,N_2].\) In particular, it turns out that if a presentation \(<A\, \mid R_1,R_2>\)  is aspherical (for example, it satisfies small cancellation conditions \(C(p)\& T(q)\) with \(1/p+1/q=1/2\)), then the equality \(N_1\cap N_2=[N_1,N_2]\) holds.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/952
work_keys_str_mv AT kulikovaov onintersectionsofnormalsubgroupsinfreegroups
first_indexed 2025-12-02T15:43:42Z
last_indexed 2025-12-02T15:43:42Z
_version_ 1850411814330826752