Flows in graphs and the homology of free categories

We study the \(R\)-module of generalized flows in a graph with coefficients in the \(R\)-representation of the graph over a ring \(R\) with 1 and show that this \(R\)-module is isomorphic to the first derived functor of the colimit. We generalize Kirchhoff’s laws and build an exact sequence for calc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Husainov, Ahmet A., Calısıcı, Hamza
Format: Artikel
Sprache:Englisch
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/957
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
_version_ 1856543045717065728
author Husainov, Ahmet A.
Calısıcı, Hamza
author_facet Husainov, Ahmet A.
Calısıcı, Hamza
author_sort Husainov, Ahmet A.
baseUrl_str
collection OJS
datestamp_date 2018-05-13T07:14:40Z
description We study the \(R\)-module of generalized flows in a graph with coefficients in the \(R\)-representation of the graph over a ring \(R\) with 1 and show that this \(R\)-module is isomorphic to the first derived functor of the colimit. We generalize Kirchhoff’s laws and build an exact sequence for calculating the R-module of flows in the union of graphs.
first_indexed 2025-12-02T15:41:33Z
format Article
id admjournalluguniveduua-article-957
institution Algebra and Discrete Mathematics
language English
last_indexed 2025-12-02T15:41:33Z
publishDate 2018
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-9572018-05-13T07:14:40Z Flows in graphs and the homology of free categories Husainov, Ahmet A. Calısıcı, Hamza homology of categories, derived of colimit, flows in graphs, Kirchhoff laws 18G10, 68R10 We study the \(R\)-module of generalized flows in a graph with coefficients in the \(R\)-representation of the graph over a ring \(R\) with 1 and show that this \(R\)-module is isomorphic to the first derived functor of the colimit. We generalize Kirchhoff’s laws and build an exact sequence for calculating the R-module of flows in the union of graphs. Lugansk National Taras Shevchenko University 2018-05-13 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/957 Algebra and Discrete Mathematics; Vol 2, No 2 (2003) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/957/486 Copyright (c) 2018 Algebra and Discrete Mathematics
spellingShingle homology of categories
derived of colimit
flows in graphs
Kirchhoff laws
18G10
68R10
Husainov, Ahmet A.
Calısıcı, Hamza
Flows in graphs and the homology of free categories
title Flows in graphs and the homology of free categories
title_full Flows in graphs and the homology of free categories
title_fullStr Flows in graphs and the homology of free categories
title_full_unstemmed Flows in graphs and the homology of free categories
title_short Flows in graphs and the homology of free categories
title_sort flows in graphs and the homology of free categories
topic homology of categories
derived of colimit
flows in graphs
Kirchhoff laws
18G10
68R10
topic_facet homology of categories
derived of colimit
flows in graphs
Kirchhoff laws
18G10
68R10
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/957
work_keys_str_mv AT husainovahmeta flowsingraphsandthehomologyoffreecategories
AT calısıcıhamza flowsingraphsandthehomologyoffreecategories