Lie and Jordan structures of differentially semiprime rings
Properties of Lie and Jordan rings (denoted respectively by \(R^L\) and \(R^J\)) associated with an associative ring \(R\) are discussed. Results on connections between the differentially simplicity (respectively primeness, semiprimeness) of \(R\), \(R^L\) and \(R^J\) are obtained.
Збережено в:
| Дата: | 2015 |
|---|---|
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2015
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/96 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| Резюме: | Properties of Lie and Jordan rings (denoted respectively by \(R^L\) and \(R^J\)) associated with an associative ring \(R\) are discussed. Results on connections between the differentially simplicity (respectively primeness, semiprimeness) of \(R\), \(R^L\) and \(R^J\) are obtained. |
|---|