On large indecomposable modules, endo-wild representation type and right pure semisimple rings
The existence of large indecomposable right \(R\)-modules over a right artinian ring \(R\) is discussed in connection with the pure semisimplicity problem and the endo-wildness of the category Mod(\(R\)) of right \(R\)-modules. Some conjectures and open problems are presented.
Збережено в:
| Дата: | 2018 |
|---|---|
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/960 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| id |
admjournalluguniveduua-article-960 |
|---|---|
| record_format |
ojs |
| spelling |
admjournalluguniveduua-article-9602018-05-13T07:14:40Z On large indecomposable modules, endo-wild representation type and right pure semisimple rings Simson, Daniel Brauer-Thrall conjectures, pure semisimple rings, Kaplansky’s test problem, endo-wild representation type, prinjective modules 16G60, 16S50, 15A21 The existence of large indecomposable right \(R\)-modules over a right artinian ring \(R\) is discussed in connection with the pure semisimplicity problem and the endo-wildness of the category Mod(\(R\)) of right \(R\)-modules. Some conjectures and open problems are presented. Lugansk National Taras Shevchenko University 2018-05-13 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/960 Algebra and Discrete Mathematics; Vol 2, No 2 (2003) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/960/489 Copyright (c) 2018 Algebra and Discrete Mathematics |
| institution |
Algebra and Discrete Mathematics |
| baseUrl_str |
|
| datestamp_date |
2018-05-13T07:14:40Z |
| collection |
OJS |
| language |
English |
| topic |
Brauer-Thrall conjectures pure semisimple rings Kaplansky’s test problem endo-wild representation type prinjective modules 16G60 16S50 15A21 |
| spellingShingle |
Brauer-Thrall conjectures pure semisimple rings Kaplansky’s test problem endo-wild representation type prinjective modules 16G60 16S50 15A21 Simson, Daniel On large indecomposable modules, endo-wild representation type and right pure semisimple rings |
| topic_facet |
Brauer-Thrall conjectures pure semisimple rings Kaplansky’s test problem endo-wild representation type prinjective modules 16G60 16S50 15A21 |
| format |
Article |
| author |
Simson, Daniel |
| author_facet |
Simson, Daniel |
| author_sort |
Simson, Daniel |
| title |
On large indecomposable modules, endo-wild representation type and right pure semisimple rings |
| title_short |
On large indecomposable modules, endo-wild representation type and right pure semisimple rings |
| title_full |
On large indecomposable modules, endo-wild representation type and right pure semisimple rings |
| title_fullStr |
On large indecomposable modules, endo-wild representation type and right pure semisimple rings |
| title_full_unstemmed |
On large indecomposable modules, endo-wild representation type and right pure semisimple rings |
| title_sort |
on large indecomposable modules, endo-wild representation type and right pure semisimple rings |
| description |
The existence of large indecomposable right \(R\)-modules over a right artinian ring \(R\) is discussed in connection with the pure semisimplicity problem and the endo-wildness of the category Mod(\(R\)) of right \(R\)-modules. Some conjectures and open problems are presented. |
| publisher |
Lugansk National Taras Shevchenko University |
| publishDate |
2018 |
| url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/960 |
| work_keys_str_mv |
AT simsondaniel onlargeindecomposablemodulesendowildrepresentationtypeandrightpuresemisimplerings |
| first_indexed |
2025-12-02T15:50:32Z |
| last_indexed |
2025-12-02T15:50:32Z |
| _version_ |
1850412245186510848 |