\(N\) – real fields
A field F is n-real if -1 is not the sum of n squares in F. It is shown that a field F is m-real if and only if rank ( \(AA^t\) ) = rank (A) for every n × m matrix A with entries from F. An n-real field F is n-real closed if every proper algebraic extension of F is not n-real. It is shown that if a...
Saved in:
| Date: | 2018 |
|---|---|
| Main Author: | Feigelstock, Shalom |
| Format: | Article |
| Language: | English |
| Published: |
Lugansk National Taras Shevchenko University
2018
|
| Subjects: | |
| Online Access: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/961 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete MathematicsSimilar Items
-
\(N\) – real fields
by: Feigelstock, Shalom
Published: (2018) -
Software development for contextual advertising of listings in the real estate domain
by: Hromenko, V.V.
Published: (2024) -
ОÑобенноÑти проÑÐ²Ð»ÐµÐ½Ð¸Ñ Ð¿Ð¾ÑтгипертоничеÑкого лизиÑа Ñритроцитов некоторых млекопитающих
by: Semionova, Elena A., et al.
Published: (2016) -
ÐžÐ¿Ñ‚Ð¸Ð¼Ð¸Ð·Ð°Ñ†Ð¸Ñ Ð¼ÐµÑ‚Ð¾Ð´Ð° витрификации мериÑтем картофелÑ
by: Stribul, T. F., et al.
Published: (2005) -
Коефіцієнти проникноÑті мембран ентероцитів миші Ð´Ð»Ñ Ð²Ð¾Ð´Ð¸ Ñ– кріопротекторів
by: Ogurtsova, Viktoriya V., et al.
Published: (2016)