On equivalence of some subcategories of modules in Morita contexts

A Morita context \((R,\,_{R}\!V_{S},\,_{S}\!W_{R},S)\) defines the isomorphism \({\cal L}_{0}(R) \cong {\cal L}_{0}(S)\) of lattices of torsions \(r\geq r_{\scriptscriptstyle I}\) of \(R\)-\(Mod\) and torsions \(s\geq r_{\scriptscriptstyle J}\) of \(S\)-\(Mod\), where \(I\) and \(J\) are the trace i...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Kashu, A. I.
Формат: Стаття
Мова:Англійська
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/963
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
_version_ 1856543368859877376
author Kashu, A. I.
author_facet Kashu, A. I.
author_sort Kashu, A. I.
baseUrl_str
collection OJS
datestamp_date 2018-05-13T10:43:19Z
description A Morita context \((R,\,_{R}\!V_{S},\,_{S}\!W_{R},S)\) defines the isomorphism \({\cal L}_{0}(R) \cong {\cal L}_{0}(S)\) of lattices of torsions \(r\geq r_{\scriptscriptstyle I}\) of \(R\)-\(Mod\) and torsions \(s\geq r_{\scriptscriptstyle J}\) of \(S\)-\(Mod\), where \(I\) and \(J\) are the trace ideals of the given context. For every pair \((r,s)\) of corresponding torsions the modifications of functors \(T^{W}=W\otimes _{R}\)- and \(T^{V}=V\otimes _{S}\)- are considered:\[R\textrm{-}Mod\supseteq \mathcal{P}(r)\begin{array}{c}\begin{array}{c}\underrightarrow{\quad\bar{T}^W=(1/s)\cdot T^W\quad}\\\overleftarrow{\quad\bar{T}^V=(1/r)\cdot T^{V}\quad}\end{array}\end{array}\mathcal{P}(s)\subseteq S\textrm{-}Mod,\]where \({\cal P}(r)\) and \({\cal P}(s)\) are the classes of torsion free modules. It is proved that these functors define the equivalence \begin{equation*} {\cal P}(r)\cap {\cal J}_{I}\approx {\cal P}(s)\cap {\cal J}_{J}, \end{equation*} where \({\cal P}(r)=\{_{R}M\ |\ r(M)=0\}\) and \({\cal J}_{I}=\{_{R}M\ |\ IM=M\}.\)
first_indexed 2026-02-08T07:58:14Z
format Article
id admjournalluguniveduua-article-963
institution Algebra and Discrete Mathematics
language English
last_indexed 2026-02-08T07:58:14Z
publishDate 2018
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-9632018-05-13T10:43:19Z On equivalence of some subcategories of modules in Morita contexts Kashu, A. I. torsion (torsion theory), Morita context, torsion free module, accessible module, equivalence 16S90, 16D90 A Morita context \((R,\,_{R}\!V_{S},\,_{S}\!W_{R},S)\) defines the isomorphism \({\cal L}_{0}(R) \cong {\cal L}_{0}(S)\) of lattices of torsions \(r\geq r_{\scriptscriptstyle I}\) of \(R\)-\(Mod\) and torsions \(s\geq r_{\scriptscriptstyle J}\) of \(S\)-\(Mod\), where \(I\) and \(J\) are the trace ideals of the given context. For every pair \((r,s)\) of corresponding torsions the modifications of functors \(T^{W}=W\otimes _{R}\)- and \(T^{V}=V\otimes _{S}\)- are considered:\[R\textrm{-}Mod\supseteq \mathcal{P}(r)\begin{array}{c}\begin{array}{c}\underrightarrow{\quad\bar{T}^W=(1/s)\cdot T^W\quad}\\\overleftarrow{\quad\bar{T}^V=(1/r)\cdot T^{V}\quad}\end{array}\end{array}\mathcal{P}(s)\subseteq S\textrm{-}Mod,\]where \({\cal P}(r)\) and \({\cal P}(s)\) are the classes of torsion free modules. It is proved that these functors define the equivalence \begin{equation*} {\cal P}(r)\cap {\cal J}_{I}\approx {\cal P}(s)\cap {\cal J}_{J}, \end{equation*} where \({\cal P}(r)=\{_{R}M\ |\ r(M)=0\}\) and \({\cal J}_{I}=\{_{R}M\ |\ IM=M\}.\) Lugansk National Taras Shevchenko University 2018-05-13 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/963 Algebra and Discrete Mathematics; Vol 2, No 3 (2003) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/963/492 Copyright (c) 2018 Algebra and Discrete Mathematics
spellingShingle torsion (torsion theory)
Morita context
torsion free module
accessible module
equivalence
16S90
16D90
Kashu, A. I.
On equivalence of some subcategories of modules in Morita contexts
title On equivalence of some subcategories of modules in Morita contexts
title_full On equivalence of some subcategories of modules in Morita contexts
title_fullStr On equivalence of some subcategories of modules in Morita contexts
title_full_unstemmed On equivalence of some subcategories of modules in Morita contexts
title_short On equivalence of some subcategories of modules in Morita contexts
title_sort on equivalence of some subcategories of modules in morita contexts
topic torsion (torsion theory)
Morita context
torsion free module
accessible module
equivalence
16S90
16D90
topic_facet torsion (torsion theory)
Morita context
torsion free module
accessible module
equivalence
16S90
16D90
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/963
work_keys_str_mv AT kashuai onequivalenceofsomesubcategoriesofmodulesinmoritacontexts