Finite group with given \(c\)-permutable subgroups

Following [1] we say that subgroups  \(H\) and \(T\) of a group \(G\) are \(c\)- permutable in \(G\) if there exists an element \(x\in G\) such that \(HT^x=T^xH\).  We prove that a finite soluble group \(G\) is supersoluble if and only if every maximal subgroup of every Sylow subgroup of \(G\) is c-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
1. Verfasser: Ahmad, Ahmad Alsheik
Format: Artikel
Sprache:Englisch
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/986
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
_version_ 1856543176244854784
author Ahmad, Ahmad Alsheik
author_facet Ahmad, Ahmad Alsheik
author_sort Ahmad, Ahmad Alsheik
baseUrl_str
collection OJS
datestamp_date 2018-05-15T05:12:44Z
description Following [1] we say that subgroups  \(H\) and \(T\) of a group \(G\) are \(c\)- permutable in \(G\) if there exists an element \(x\in G\) such that \(HT^x=T^xH\).  We prove that a finite soluble group \(G\) is supersoluble if and only if every maximal subgroup of every Sylow subgroup of \(G\) is c-permutable with all Hall subgroups of \(G\).
first_indexed 2026-02-08T07:58:14Z
format Article
id admjournalluguniveduua-article-986
institution Algebra and Discrete Mathematics
language English
last_indexed 2026-02-08T07:58:14Z
publishDate 2018
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-9862018-05-15T05:12:44Z Finite group with given \(c\)-permutable subgroups Ahmad, Ahmad Alsheik finite group, maximal subgroup, Sylow subgroup, supersoluble group, \(c\)-permutable subgroup 20D10 Following [1] we say that subgroups  \(H\) and \(T\) of a group \(G\) are \(c\)- permutable in \(G\) if there exists an element \(x\in G\) such that \(HT^x=T^xH\).  We prove that a finite soluble group \(G\) is supersoluble if and only if every maximal subgroup of every Sylow subgroup of \(G\) is c-permutable with all Hall subgroups of \(G\). Lugansk National Taras Shevchenko University 2018-05-15 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/986 Algebra and Discrete Mathematics; Vol 3, No 2 (2004) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/986/515 Copyright (c) 2018 Algebra and Discrete Mathematics
spellingShingle finite group
maximal subgroup
Sylow subgroup
supersoluble group
\(c\)-permutable subgroup
20D10
Ahmad, Ahmad Alsheik
Finite group with given \(c\)-permutable subgroups
title Finite group with given \(c\)-permutable subgroups
title_full Finite group with given \(c\)-permutable subgroups
title_fullStr Finite group with given \(c\)-permutable subgroups
title_full_unstemmed Finite group with given \(c\)-permutable subgroups
title_short Finite group with given \(c\)-permutable subgroups
title_sort finite group with given \(c\)-permutable subgroups
topic finite group
maximal subgroup
Sylow subgroup
supersoluble group
\(c\)-permutable subgroup
20D10
topic_facet finite group
maximal subgroup
Sylow subgroup
supersoluble group
\(c\)-permutable subgroup
20D10
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/986
work_keys_str_mv AT ahmadahmadalsheik finitegroupwithgivencpermutablesubgroups