Finite group with given \(c\)-permutable subgroups
Following [1] we say that subgroups \(H\) and \(T\) of a group \(G\) are \(c\)- permutable in \(G\) if there exists an element \(x\in G\) such that \(HT^x=T^xH\). We prove that a finite soluble group \(G\) is supersoluble if and only if every maximal subgroup of every Sylow subgroup of \(G\) is c-...
Збережено в:
| Дата: | 2018 |
|---|---|
| Автор: | |
| Формат: | Стаття |
| Мова: | Англійська |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/986 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| _version_ | 1856543176244854784 |
|---|---|
| author | Ahmad, Ahmad Alsheik |
| author_facet | Ahmad, Ahmad Alsheik |
| author_sort | Ahmad, Ahmad Alsheik |
| baseUrl_str | |
| collection | OJS |
| datestamp_date | 2018-05-15T05:12:44Z |
| description | Following [1] we say that subgroups \(H\) and \(T\) of a group \(G\) are \(c\)- permutable in \(G\) if there exists an element \(x\in G\) such that \(HT^x=T^xH\). We prove that a finite soluble group \(G\) is supersoluble if and only if every maximal subgroup of every Sylow subgroup of \(G\) is c-permutable with all Hall subgroups of \(G\). |
| first_indexed | 2026-02-08T07:58:14Z |
| format | Article |
| id | admjournalluguniveduua-article-986 |
| institution | Algebra and Discrete Mathematics |
| language | English |
| last_indexed | 2026-02-08T07:58:14Z |
| publishDate | 2018 |
| publisher | Lugansk National Taras Shevchenko University |
| record_format | ojs |
| spelling | admjournalluguniveduua-article-9862018-05-15T05:12:44Z Finite group with given \(c\)-permutable subgroups Ahmad, Ahmad Alsheik finite group, maximal subgroup, Sylow subgroup, supersoluble group, \(c\)-permutable subgroup 20D10 Following [1] we say that subgroups \(H\) and \(T\) of a group \(G\) are \(c\)- permutable in \(G\) if there exists an element \(x\in G\) such that \(HT^x=T^xH\). We prove that a finite soluble group \(G\) is supersoluble if and only if every maximal subgroup of every Sylow subgroup of \(G\) is c-permutable with all Hall subgroups of \(G\). Lugansk National Taras Shevchenko University 2018-05-15 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/986 Algebra and Discrete Mathematics; Vol 3, No 2 (2004) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/986/515 Copyright (c) 2018 Algebra and Discrete Mathematics |
| spellingShingle | finite group maximal subgroup Sylow subgroup supersoluble group \(c\)-permutable subgroup 20D10 Ahmad, Ahmad Alsheik Finite group with given \(c\)-permutable subgroups |
| title | Finite group with given \(c\)-permutable subgroups |
| title_full | Finite group with given \(c\)-permutable subgroups |
| title_fullStr | Finite group with given \(c\)-permutable subgroups |
| title_full_unstemmed | Finite group with given \(c\)-permutable subgroups |
| title_short | Finite group with given \(c\)-permutable subgroups |
| title_sort | finite group with given \(c\)-permutable subgroups |
| topic | finite group maximal subgroup Sylow subgroup supersoluble group \(c\)-permutable subgroup 20D10 |
| topic_facet | finite group maximal subgroup Sylow subgroup supersoluble group \(c\)-permutable subgroup 20D10 |
| url | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/986 |
| work_keys_str_mv | AT ahmadahmadalsheik finitegroupwithgivencpermutablesubgroups |