Neural network modeling of critical tempe-ratures for steel pitting.
The task of creating mathematical software for constructing quantitative dependency models based on forward propagation neural networks has been solved in the work. A modification of method for dropping out neurons is proposed, which better prevents the model from overfitting. The modified method ta...
Gespeichert in:
| Datum: | 2019 |
|---|---|
| Hauptverfasser: | Korniienko, O. V., Subbotin, S. O., Naryvskyi, O. E. |
| Format: | Artikel |
| Sprache: | Ukrainian |
| Veröffentlicht: |
Інститут проблем реєстрації інформації НАН України
2019
|
| Schlagworte: | |
| Online Zugang: | http://drsp.ipri.kiev.ua/article/view/179699 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Data Recording, Storage & Processing |
Institution
Data Recording, Storage & ProcessingÄhnliche Einträge
-
A prediction of the frequency of non-periodic signals based on convolutional neural networks
von: Subbotin, S. A., et al.
Veröffentlicht: (2018) -
Neural network modeling of critical tempe-ratures for steel pitting
von: O. B. Korniienko, et al.
Veröffentlicht: (2019) -
Do we need a more sophisticated multilayer artificial neural network to compute roughness coefficient?
von: Khodnevych, Yaroslav V., et al.
Veröffentlicht: (2023) -
A generalized methodology of sign language recognition on video streams based on neural networks and transformers
von: Кузнєцова, Н. В., et al.
Veröffentlicht: (2023) -
High-tempe-rature reflective coatings for long-term storage media
von: Petrov, V. V., et al.
Veröffentlicht: (2019)