PARETO OPTIMAL SOLUTION OF MULTIOBJECTIVE SYNTHESIS OF ROBUST CONTROLLERS OF MULTIMASS ELECTROMECHANICAL SYSTEMS BASED ON MULTISWARM STOCHASTIC MULTIAGENT OPTIMIZATION

Purpose. Developed the method for solving the problem of multiobjective synthesis of robust control by multimass electromechanical systems based on the construction of the Pareto optimal solutions using multiswarm stochastic multi-agent optimization of particles swarm, which reduces the time of dete...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автор: Nikitina, T. B.
Формат: Стаття
Мова:English
Ukrainian
Опубліковано: National Technical University "Kharkiv Polytechnic Institute" and State Institution “Institute of Technical Problems of Magnetism of the National Academy of Sciences of Ukraine” 2017
Теми:
Онлайн доступ:http://eie.khpi.edu.ua/article/view/2074-272X.2017.2.05
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Electrical Engineering & Electromechanics

Репозитарії

Electrical Engineering & Electromechanics
id eiekhpieduua-article-100676
record_format ojs
institution Electrical Engineering & Electromechanics
collection OJS
language English
Ukrainian
topic multimass electromechanical system
multiobjective synthesis
multiswarm stochastic multiagent optimization
Pareto optimal solution
621.3.01
многомассовая электромеханическая система
многокритериальный синтез
многороевая стохастическая мультиагентная оптимизация
Парето-оптимальное решение
621.3.01
spellingShingle multimass electromechanical system
multiobjective synthesis
multiswarm stochastic multiagent optimization
Pareto optimal solution
621.3.01
многомассовая электромеханическая система
многокритериальный синтез
многороевая стохастическая мультиагентная оптимизация
Парето-оптимальное решение
621.3.01
Nikitina, T. B.
PARETO OPTIMAL SOLUTION OF MULTIOBJECTIVE SYNTHESIS OF ROBUST CONTROLLERS OF MULTIMASS ELECTROMECHANICAL SYSTEMS BASED ON MULTISWARM STOCHASTIC MULTIAGENT OPTIMIZATION
topic_facet multimass electromechanical system
multiobjective synthesis
multiswarm stochastic multiagent optimization
Pareto optimal solution
621.3.01
многомассовая электромеханическая система
многокритериальный синтез
многороевая стохастическая мультиагентная оптимизация
Парето-оптимальное решение
621.3.01
format Article
author Nikitina, T. B.
author_facet Nikitina, T. B.
author_sort Nikitina, T. B.
title PARETO OPTIMAL SOLUTION OF MULTIOBJECTIVE SYNTHESIS OF ROBUST CONTROLLERS OF MULTIMASS ELECTROMECHANICAL SYSTEMS BASED ON MULTISWARM STOCHASTIC MULTIAGENT OPTIMIZATION
title_short PARETO OPTIMAL SOLUTION OF MULTIOBJECTIVE SYNTHESIS OF ROBUST CONTROLLERS OF MULTIMASS ELECTROMECHANICAL SYSTEMS BASED ON MULTISWARM STOCHASTIC MULTIAGENT OPTIMIZATION
title_full PARETO OPTIMAL SOLUTION OF MULTIOBJECTIVE SYNTHESIS OF ROBUST CONTROLLERS OF MULTIMASS ELECTROMECHANICAL SYSTEMS BASED ON MULTISWARM STOCHASTIC MULTIAGENT OPTIMIZATION
title_fullStr PARETO OPTIMAL SOLUTION OF MULTIOBJECTIVE SYNTHESIS OF ROBUST CONTROLLERS OF MULTIMASS ELECTROMECHANICAL SYSTEMS BASED ON MULTISWARM STOCHASTIC MULTIAGENT OPTIMIZATION
title_full_unstemmed PARETO OPTIMAL SOLUTION OF MULTIOBJECTIVE SYNTHESIS OF ROBUST CONTROLLERS OF MULTIMASS ELECTROMECHANICAL SYSTEMS BASED ON MULTISWARM STOCHASTIC MULTIAGENT OPTIMIZATION
title_sort pareto optimal solution of multiobjective synthesis of robust controllers of multimass electromechanical systems based on multiswarm stochastic multiagent optimization
title_alt ПАРЕТО-ОПТИМАЛЬНОЕ РЕШЕНИЕ МНОГОКРИТЕРИАЛЬНОЙ ЗАДАЧИ СИНТЕЗА РОБАСТНЫХ РЕГУЛЯТОРОВ МНОГОМАССОВЫХ ЭЛЕКТРОМЕХАНИЧЕСКИХ СИСТЕМ НА ОСНОВЕ МНОГОРОЕВОЙ СТОХАСТИЧЕСКОЙ МУЛЬТИАГЕНТНОЙ ОПТИМИЗАЦИИ
description Purpose. Developed the method for solving the problem of multiobjective synthesis of robust control by multimass electromechanical systems based on the construction of the Pareto optimal solutions using multiswarm stochastic multi-agent optimization of particles swarm, which reduces the time of determining the parameters of robust controls multimass electromechanical systems and satisfy a variety of requirements that apply to the work of such systems in different modes. Methodology. Multiobjective synthesis of robust control of multimass electromechanical systems is reduced to the solution of solving the problem of multiobjective optimization. To correct the above problem solving multiobjective optimization in addition to the vector optimization criteria and constraints must also be aware of the binary preference relations of local solutions against each other. The basis for such a formal approach is to build areas of Pareto-optimal solutions. This approach can significantly narrow down the range of possible solutions of the problem of optimal initial multiobjective optimization and, consequently, reduce the complexity of the person making the decision on the selection of a single version of the optimal solution. Results. The results of the synthesis of multi-criteria electromechanical servo system and a comparison of dynamic characteristics, and it is shown that the use of synthesized robust controllers reduced the error guidance working mechanism and reduced the system sensitivity to changes in the control parameters of the object compared to the existing system with standard controls. Originality. For the first time, based on the construction of the Pareto optimal solutions using a multiswarm stochastic multi-agent optimization particle algorithms improved method for solving formulated multiobjective multiextremal nonlinear programming problem with constraints, to which the problem of multiobjective synthesis of robust controls by multimass electromechanical systems that can significantly reduce the time to solve problems and meet a variety of requirements that apply to the multimass electromechanical systems in different modes. Practical value. Practical recommendations on reasonable selection of the target vector of robust control by multimass electromechanical systems. Results of synthesis of electromechanical servo system shown that the use of synthesized robust controllers reduced the error guidance of working mechanism and reduce the system sensitivity to changes of plant parameters compared to a system with standard controls.
publisher National Technical University "Kharkiv Polytechnic Institute" and State Institution “Institute of Technical Problems of Magnetism of the National Academy of Sciences of Ukraine”
publishDate 2017
url http://eie.khpi.edu.ua/article/view/2074-272X.2017.2.05
work_keys_str_mv AT nikitinatb paretooptimalsolutionofmultiobjectivesynthesisofrobustcontrollersofmultimasselectromechanicalsystemsbasedonmultiswarmstochasticmultiagentoptimization
AT nikitinatb paretooptimalʹnoerešeniemnogokriterialʹnojzadačisintezarobastnyhregulâtorovmnogomassovyhélektromehaničeskihsistemnaosnovemnogoroevojstohastičeskojmulʹtiagentnojoptimizacii
first_indexed 2024-06-01T14:38:18Z
last_indexed 2024-06-01T14:38:18Z
_version_ 1800669965410369536
spelling eiekhpieduua-article-1006762017-06-23T12:11:26Z PARETO OPTIMAL SOLUTION OF MULTIOBJECTIVE SYNTHESIS OF ROBUST CONTROLLERS OF MULTIMASS ELECTROMECHANICAL SYSTEMS BASED ON MULTISWARM STOCHASTIC MULTIAGENT OPTIMIZATION ПАРЕТО-ОПТИМАЛЬНОЕ РЕШЕНИЕ МНОГОКРИТЕРИАЛЬНОЙ ЗАДАЧИ СИНТЕЗА РОБАСТНЫХ РЕГУЛЯТОРОВ МНОГОМАССОВЫХ ЭЛЕКТРОМЕХАНИЧЕСКИХ СИСТЕМ НА ОСНОВЕ МНОГОРОЕВОЙ СТОХАСТИЧЕСКОЙ МУЛЬТИАГЕНТНОЙ ОПТИМИЗАЦИИ Nikitina, T. B. multimass electromechanical system multiobjective synthesis multiswarm stochastic multiagent optimization Pareto optimal solution 621.3.01 многомассовая электромеханическая система многокритериальный синтез многороевая стохастическая мультиагентная оптимизация Парето-оптимальное решение 621.3.01 Purpose. Developed the method for solving the problem of multiobjective synthesis of robust control by multimass electromechanical systems based on the construction of the Pareto optimal solutions using multiswarm stochastic multi-agent optimization of particles swarm, which reduces the time of determining the parameters of robust controls multimass electromechanical systems and satisfy a variety of requirements that apply to the work of such systems in different modes. Methodology. Multiobjective synthesis of robust control of multimass electromechanical systems is reduced to the solution of solving the problem of multiobjective optimization. To correct the above problem solving multiobjective optimization in addition to the vector optimization criteria and constraints must also be aware of the binary preference relations of local solutions against each other. The basis for such a formal approach is to build areas of Pareto-optimal solutions. This approach can significantly narrow down the range of possible solutions of the problem of optimal initial multiobjective optimization and, consequently, reduce the complexity of the person making the decision on the selection of a single version of the optimal solution. Results. The results of the synthesis of multi-criteria electromechanical servo system and a comparison of dynamic characteristics, and it is shown that the use of synthesized robust controllers reduced the error guidance working mechanism and reduced the system sensitivity to changes in the control parameters of the object compared to the existing system with standard controls. Originality. For the first time, based on the construction of the Pareto optimal solutions using a multiswarm stochastic multi-agent optimization particle algorithms improved method for solving formulated multiobjective multiextremal nonlinear programming problem with constraints, to which the problem of multiobjective synthesis of robust controls by multimass electromechanical systems that can significantly reduce the time to solve problems and meet a variety of requirements that apply to the multimass electromechanical systems in different modes. Practical value. Practical recommendations on reasonable selection of the target vector of robust control by multimass electromechanical systems. Results of synthesis of electromechanical servo system shown that the use of synthesized robust controllers reduced the error guidance of working mechanism and reduce the system sensitivity to changes of plant parameters compared to a system with standard controls. Усовершенствован метод многокритериального синтеза робастного управления многомассовыми электромеханическими системами на основе построения Парето-оптимальных решений и с учетом бинарных отношений предпочтения локальных критериев с помощью алгоритмов многороевой стохастической мультиагентной оптимизации, что позволяет существенно сократить время решения задачи и удовлетворить разнообразным требованиям, которые предъявляются к работе систем в различных режимах. Приведены результаты сравнений динамических характеристик электромеханических систем с синтезированными регуляторами. National Technical University "Kharkiv Polytechnic Institute" and State Institution “Institute of Technical Problems of Magnetism of the National Academy of Sciences of Ukraine” 2017-04-29 Article Article application/pdf application/pdf http://eie.khpi.edu.ua/article/view/2074-272X.2017.2.05 10.20998/2074-272X.2017.2.05 Electrical Engineering & Electromechanics; No. 2 (2017); 34-38 Электротехника и Электромеханика; № 2 (2017); 34-38 Електротехніка і Електромеханіка; № 2 (2017); 34-38 2309-3404 2074-272X en uk http://eie.khpi.edu.ua/article/view/2074-272X.2017.2.05/95890 http://eie.khpi.edu.ua/article/view/2074-272X.2017.2.05/95891 Copyright (c) 2017 T. B. Nikitina https://creativecommons.org/licenses/by-nc/4.0