A MATHEMATICAL MODEL OF THERMAL POWER PLANTS SMOKE EXHAUSTERS INDUCTION MOTORS SYSTEM OPERATION MODES
Purpose. Development of a model-software complex (MSC) for computer analysis of modes of the system of induction motors (IM) of smoke exhausters of thermal power plant (TPP), the basic elements of which are mathematical models and corresponding software written in the programming language FORTRAN....
Збережено в:
Дата: | 2017 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English Ukrainian |
Опубліковано: |
National Technical University "Kharkiv Polytechnic Institute" and State Institution “Institute of Technical Problems of Magnetism of the National Academy of Sciences of Ukraine”
2017
|
Теми: | |
Онлайн доступ: | http://eie.khpi.edu.ua/article/view/2074-272X.2017.3.03 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Electrical Engineering & Electromechanics |
Репозиторії
Electrical Engineering & Electromechanicsid |
eiekhpieduua-article-105483 |
---|---|
record_format |
ojs |
spelling |
eiekhpieduua-article-1054832017-08-21T18:01:34Z A MATHEMATICAL MODEL OF THERMAL POWER PLANTS SMOKE EXHAUSTERS INDUCTION MOTORS SYSTEM OPERATION MODES МАТЕМАТИЧНА МОДЕЛЬ РЕЖИМІВ РОБОТИ СИСТЕМИ АСИНХРОННИХ ДВИГУНІВ ДИМОТЯГІВ ТЕПЛОВИХ ЕЛЕКТРИЧНИХ СТАНЦІЙ Vasyliv, K. M. mathematic model numerical methods thermal power plant induction motors 621.313.333 математична модель чисельні методи теплова електростанція асинхронні двигуни 621.313.333 Purpose. Development of a model-software complex (MSC) for computer analysis of modes of the system of induction motors (IM) of smoke exhausters of thermal power plant (TPP), the basic elements of which are mathematical models and corresponding software written in the programming language FORTRAN. Methodology. Mathematical model serves as a system of differential equations of electrical and mechanical condition. The equation of electric state is written in phase coordinates based on Kirchhoff's laws, and mechanical condition described by the d'Alembert equation. Mathematical model focuses on explicit numerical integration methods. Scientific novelty. The equation of state of electrical connections takes into account the mutual electromagnetic circuits for transformer of own needs (TON) and induction motors and interdependence (in all possible combinations) between: TON (from which motors powered) and each of the two IM and blood pressure between themselves. The complex allows to simulate electromagnetic and electromechanical processes in transitional and steady, symmetric and asymmetric modes including modes of self-induction motors. Results. Complex is used for computer analysis of electromagnetic and electromechanical processes and established the basic laws of motion modes of starting, stopping and self-start of IM of smoke exhausters of the TPP unit. Practical value. The complex is suitable for computer analysis of modes of other similar units of own needs of thermal power plants. Розроблено математичну модель електротехнічного комплексу: «Електрична мережа – трансформатор – два асинхронні двигуни» у фазних координатах, орієнтовану на явні методи числового інтегрування системи диференціальних рівнянь. На базі математичної моделі створено програмний комплекс і проведено дослідження електромагнітних і електромеханічних процесів та встановлено основні закономірності їх перебігу в режимах пуску, зупинки та самозапуску асинхронних двигунів димотягів енергоблоку теплової електричної станції. National Technical University "Kharkiv Polytechnic Institute" and State Institution “Institute of Technical Problems of Magnetism of the National Academy of Sciences of Ukraine” 2017-06-29 Article Article application/pdf application/pdf http://eie.khpi.edu.ua/article/view/2074-272X.2017.3.03 10.20998/2074-272X.2017.3.03 Electrical Engineering & Electromechanics; No. 3 (2017); 19-26 Электротехника и Электромеханика; № 3 (2017); 19-26 Електротехніка і Електромеханіка; № 3 (2017); 19-26 2309-3404 2074-272X en uk http://eie.khpi.edu.ua/article/view/2074-272X.2017.3.03/100680 http://eie.khpi.edu.ua/article/view/2074-272X.2017.3.03/100681 Copyright (c) 2017 K. M. Vasyliv https://creativecommons.org/licenses/by-nc/4.0 |
institution |
Electrical Engineering & Electromechanics |
collection |
OJS |
language |
English Ukrainian |
topic |
mathematic model numerical methods thermal power plant induction motors 621.313.333 математична модель чисельні методи теплова електростанція асинхронні двигуни 621.313.333 |
spellingShingle |
mathematic model numerical methods thermal power plant induction motors 621.313.333 математична модель чисельні методи теплова електростанція асинхронні двигуни 621.313.333 Vasyliv, K. M. A MATHEMATICAL MODEL OF THERMAL POWER PLANTS SMOKE EXHAUSTERS INDUCTION MOTORS SYSTEM OPERATION MODES |
topic_facet |
mathematic model numerical methods thermal power plant induction motors 621.313.333 математична модель чисельні методи теплова електростанція асинхронні двигуни 621.313.333 |
format |
Article |
author |
Vasyliv, K. M. |
author_facet |
Vasyliv, K. M. |
author_sort |
Vasyliv, K. M. |
title |
A MATHEMATICAL MODEL OF THERMAL POWER PLANTS SMOKE EXHAUSTERS INDUCTION MOTORS SYSTEM OPERATION MODES |
title_short |
A MATHEMATICAL MODEL OF THERMAL POWER PLANTS SMOKE EXHAUSTERS INDUCTION MOTORS SYSTEM OPERATION MODES |
title_full |
A MATHEMATICAL MODEL OF THERMAL POWER PLANTS SMOKE EXHAUSTERS INDUCTION MOTORS SYSTEM OPERATION MODES |
title_fullStr |
A MATHEMATICAL MODEL OF THERMAL POWER PLANTS SMOKE EXHAUSTERS INDUCTION MOTORS SYSTEM OPERATION MODES |
title_full_unstemmed |
A MATHEMATICAL MODEL OF THERMAL POWER PLANTS SMOKE EXHAUSTERS INDUCTION MOTORS SYSTEM OPERATION MODES |
title_sort |
mathematical model of thermal power plants smoke exhausters induction motors system operation modes |
title_alt |
МАТЕМАТИЧНА МОДЕЛЬ РЕЖИМІВ РОБОТИ СИСТЕМИ АСИНХРОННИХ ДВИГУНІВ ДИМОТЯГІВ ТЕПЛОВИХ ЕЛЕКТРИЧНИХ СТАНЦІЙ |
description |
Purpose. Development of a model-software complex (MSC) for computer analysis of modes of the system of induction motors (IM) of smoke exhausters of thermal power plant (TPP), the basic elements of which are mathematical models and corresponding software written in the programming language FORTRAN. Methodology. Mathematical model serves as a system of differential equations of electrical and mechanical condition. The equation of electric state is written in phase coordinates based on Kirchhoff's laws, and mechanical condition described by the d'Alembert equation. Mathematical model focuses on explicit numerical integration methods. Scientific novelty. The equation of state of electrical connections takes into account the mutual electromagnetic circuits for transformer of own needs (TON) and induction motors and interdependence (in all possible combinations) between: TON (from which motors powered) and each of the two IM and blood pressure between themselves. The complex allows to simulate electromagnetic and electromechanical processes in transitional and steady, symmetric and asymmetric modes including modes of self-induction motors. Results. Complex is used for computer analysis of electromagnetic and electromechanical processes and established the basic laws of motion modes of starting, stopping and self-start of IM of smoke exhausters of the TPP unit. Practical value. The complex is suitable for computer analysis of modes of other similar units of own needs of thermal power plants. |
publisher |
National Technical University "Kharkiv Polytechnic Institute" and State Institution “Institute of Technical Problems of Magnetism of the National Academy of Sciences of Ukraine” |
publishDate |
2017 |
url |
http://eie.khpi.edu.ua/article/view/2074-272X.2017.3.03 |
work_keys_str_mv |
AT vasylivkm amathematicalmodelofthermalpowerplantssmokeexhaustersinductionmotorssystemoperationmodes AT vasylivkm matematičnamodelʹrežimívrobotisistemiasinhronnihdvigunívdimotâgívteplovihelektričnihstancíj AT vasylivkm mathematicalmodelofthermalpowerplantssmokeexhaustersinductionmotorssystemoperationmodes |
first_indexed |
2024-06-01T14:38:20Z |
last_indexed |
2024-06-01T14:38:20Z |
_version_ |
1800669967914369024 |