MODELING OF AN ADVANCED HEAT EXCHANGE UNIT WITH MICROCHANNELS FOR A COMBINED PHOTOENERGY SYSTEM

Purpose. Mathematical modeling of the heat exchange unit main parameters for photoenergy system based on general models with forced circulation of heat transfer fluid. Methodology. To determine the coefficient of heat transfer at a given coolant temperature and surfaces temperature necessary to dete...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автор: Zaitsev, R. V.
Формат: Стаття
Мова:English
Ukrainian
Опубліковано: National Technical University "Kharkiv Polytechnic Institute" and Аnatolii Pidhornyi Institute of Power Machines and Systems of NAS of Ukraine 2017
Теми:
Онлайн доступ:http://eie.khpi.edu.ua/article/view/2074-272X.2017.3.08
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Electrical Engineering & Electromechanics

Репозитарії

Electrical Engineering & Electromechanics
id eiekhpieduua-article-105491
record_format ojs
spelling eiekhpieduua-article-1054912017-08-21T18:01:34Z MODELING OF AN ADVANCED HEAT EXCHANGE UNIT WITH MICROCHANNELS FOR A COMBINED PHOTOENERGY SYSTEM МОДЕЛЮВАННЯ ВДОСКОНАЛЕНОГО ТЕПЛООБМІННОГО БЛОКУ З МІКРОКАНАЛАМИ ДЛЯ КОМБІНОВАНОЇ ФОТОЕНЕРГЕТИЧНОЇ УСТАНОВКИ Zaitsev, R. V. heat exchanger unit coolant solar panels combined photoenergy system 536.242 теплообмінний блок теплоносій сонячна батарея комбінована фотоенергетична установка 536.242 Purpose. Mathematical modeling of the heat exchange unit main parameters for photoenergy system based on general models with forced circulation of heat transfer fluid. Methodology. To determine the coefficient of heat transfer at a given coolant temperature and surfaces temperature necessary to determine the temperature gradient in the wall of the heat exchanger. Temperature gradients can be determined by solving the equation of energy, which depends on the distribution of the flow rate in the flow. In general, a solution of convective heat transfer fluid to flow along the plane comes to solution of the system of differential equations. Results. In the paper features of the selection of theoretical basis and mathematical modeling of thermal processes in the heat exchange unit for combination photoenergy system are presented. As a result of the simulation conducted we improve and develop high-efficiency heat exchange unit with microchannels. Testing of the proposed unit proved its high efficiency through the implementation of turbulent flow of coolant with heat transfer coefficient at 18 kW/(m2×K). Analytical testing of the heat exchanger allowed showing that heat exchanger unit provides a stable operating temperature at less than 50 °C with the coolant flow rate is less than 0.3 m/s. Originality. Novelty of the proposed heat exchanger is in the optimal design of microchannels to improve the heat transfer coefficient. Practical value. The use of this heat exchanger will improve the quality and uniformity of cooling solar panels and reduce energy costs for circulation of fluid. У роботі розглядаються особливості підбору теоретичного підґрунтя та математичне моделювання теплових процесів у теплообмінному блоці для комбінованої фотоенергетичної установки. За результатами моделювання проведено вдосконалення та розробку високоефективного теплообмінного блоку з мікроканалами. Апробація запропонованого блоку підтвердила його високу ефективність за рахунок реалізації турбулентного режиму протікання теплоносія. Використання такого теплообмінника дозволить підвищити якість і рівномірність охолодження сонячних батарей та зменшити витрати енергії на циркуляцію рідини. National Technical University "Kharkiv Polytechnic Institute" and Аnatolii Pidhornyi Institute of Power Machines and Systems of NAS of Ukraine 2017-06-29 Article Article application/pdf application/pdf http://eie.khpi.edu.ua/article/view/2074-272X.2017.3.08 10.20998/2074-272X.2017.3.08 Electrical Engineering & Electromechanics; No. 3 (2017); 57-62 Электротехника и Электромеханика; № 3 (2017); 57-62 Електротехніка і Електромеханіка; № 3 (2017); 57-62 2309-3404 2074-272X en uk http://eie.khpi.edu.ua/article/view/2074-272X.2017.3.08/100697 http://eie.khpi.edu.ua/article/view/2074-272X.2017.3.08/100698 Copyright (c) 2017 R. V. Zaitsev https://creativecommons.org/licenses/by-nc/4.0
institution Electrical Engineering & Electromechanics
baseUrl_str
datestamp_date 2017-08-21T18:01:34Z
collection OJS
language English
Ukrainian
topic heat exchanger unit
coolant
solar panels
combined photoenergy system
536.242
spellingShingle heat exchanger unit
coolant
solar panels
combined photoenergy system
536.242
Zaitsev, R. V.
MODELING OF AN ADVANCED HEAT EXCHANGE UNIT WITH MICROCHANNELS FOR A COMBINED PHOTOENERGY SYSTEM
topic_facet heat exchanger unit
coolant
solar panels
combined photoenergy system
536.242
теплообмінний блок
теплоносій
сонячна батарея
комбінована фотоенергетична установка
536.242
format Article
author Zaitsev, R. V.
author_facet Zaitsev, R. V.
author_sort Zaitsev, R. V.
title MODELING OF AN ADVANCED HEAT EXCHANGE UNIT WITH MICROCHANNELS FOR A COMBINED PHOTOENERGY SYSTEM
title_short MODELING OF AN ADVANCED HEAT EXCHANGE UNIT WITH MICROCHANNELS FOR A COMBINED PHOTOENERGY SYSTEM
title_full MODELING OF AN ADVANCED HEAT EXCHANGE UNIT WITH MICROCHANNELS FOR A COMBINED PHOTOENERGY SYSTEM
title_fullStr MODELING OF AN ADVANCED HEAT EXCHANGE UNIT WITH MICROCHANNELS FOR A COMBINED PHOTOENERGY SYSTEM
title_full_unstemmed MODELING OF AN ADVANCED HEAT EXCHANGE UNIT WITH MICROCHANNELS FOR A COMBINED PHOTOENERGY SYSTEM
title_sort modeling of an advanced heat exchange unit with microchannels for a combined photoenergy system
title_alt МОДЕЛЮВАННЯ ВДОСКОНАЛЕНОГО ТЕПЛООБМІННОГО БЛОКУ З МІКРОКАНАЛАМИ ДЛЯ КОМБІНОВАНОЇ ФОТОЕНЕРГЕТИЧНОЇ УСТАНОВКИ
description Purpose. Mathematical modeling of the heat exchange unit main parameters for photoenergy system based on general models with forced circulation of heat transfer fluid. Methodology. To determine the coefficient of heat transfer at a given coolant temperature and surfaces temperature necessary to determine the temperature gradient in the wall of the heat exchanger. Temperature gradients can be determined by solving the equation of energy, which depends on the distribution of the flow rate in the flow. In general, a solution of convective heat transfer fluid to flow along the plane comes to solution of the system of differential equations. Results. In the paper features of the selection of theoretical basis and mathematical modeling of thermal processes in the heat exchange unit for combination photoenergy system are presented. As a result of the simulation conducted we improve and develop high-efficiency heat exchange unit with microchannels. Testing of the proposed unit proved its high efficiency through the implementation of turbulent flow of coolant with heat transfer coefficient at 18 kW/(m2×K). Analytical testing of the heat exchanger allowed showing that heat exchanger unit provides a stable operating temperature at less than 50 °C with the coolant flow rate is less than 0.3 m/s. Originality. Novelty of the proposed heat exchanger is in the optimal design of microchannels to improve the heat transfer coefficient. Practical value. The use of this heat exchanger will improve the quality and uniformity of cooling solar panels and reduce energy costs for circulation of fluid.
publisher National Technical University "Kharkiv Polytechnic Institute" and Аnatolii Pidhornyi Institute of Power Machines and Systems of NAS of Ukraine
publishDate 2017
url http://eie.khpi.edu.ua/article/view/2074-272X.2017.3.08
work_keys_str_mv AT zaitsevrv modelingofanadvancedheatexchangeunitwithmicrochannelsforacombinedphotoenergysystem
AT zaitsevrv modelûvannâvdoskonalenogoteploobmínnogoblokuzmíkrokanalamidlâkombínovanoífotoenergetičnoíustanovki
first_indexed 2025-07-17T11:45:56Z
last_indexed 2025-07-17T11:45:56Z
_version_ 1850411534862254080