TESTING OF NUMERICAL SOLUTION OF THE PROBLEM OF DETERMINING SOURCES OF MAGNETOSTATIC FIELD IN MAGNETIZED MEDIUM

Purpose. Testing of numerical solution algorithm for integral equation for calculation of plane meridian magnetostatic field source distribution at interfaces of piecewise homogeneous magnetized medium by means of electrostatic analogy. Methodology. The piecewise homogeneous medium consists of three...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Mikhailov, V. M., Chunikhin, K. V.
Формат: Стаття
Мова:English
Ukrainian
Опубліковано: National Technical University "Kharkiv Polytechnic Institute" and State Institution “Institute of Technical Problems of Magnetism of the National Academy of Sciences of Ukraine” 2017
Теми:
Онлайн доступ:http://eie.khpi.edu.ua/article/view/2074-272X.2017.6.06
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Electrical Engineering & Electromechanics

Репозитарії

Electrical Engineering & Electromechanics
id eiekhpieduua-article-116383
record_format ojs
institution Electrical Engineering & Electromechanics
collection OJS
language English
Ukrainian
topic plane meridian magnetostatic field
piecewise homogeneous magnetized medium
integral equation
electrostatic analogy
fictitious magnetic charge
621.3
плоскомеридианное магнитостатическое поле
кусочно-однородная намагничиваемая среда
интегральное уравнение
электростатическая аналогия
фиктивный магнитный заряд
621.3
spellingShingle plane meridian magnetostatic field
piecewise homogeneous magnetized medium
integral equation
electrostatic analogy
fictitious magnetic charge
621.3
плоскомеридианное магнитостатическое поле
кусочно-однородная намагничиваемая среда
интегральное уравнение
электростатическая аналогия
фиктивный магнитный заряд
621.3
Mikhailov, V. M.
Chunikhin, K. V.
TESTING OF NUMERICAL SOLUTION OF THE PROBLEM OF DETERMINING SOURCES OF MAGNETOSTATIC FIELD IN MAGNETIZED MEDIUM
topic_facet plane meridian magnetostatic field
piecewise homogeneous magnetized medium
integral equation
electrostatic analogy
fictitious magnetic charge
621.3
плоскомеридианное магнитостатическое поле
кусочно-однородная намагничиваемая среда
интегральное уравнение
электростатическая аналогия
фиктивный магнитный заряд
621.3
format Article
author Mikhailov, V. M.
Chunikhin, K. V.
author_facet Mikhailov, V. M.
Chunikhin, K. V.
author_sort Mikhailov, V. M.
title TESTING OF NUMERICAL SOLUTION OF THE PROBLEM OF DETERMINING SOURCES OF MAGNETOSTATIC FIELD IN MAGNETIZED MEDIUM
title_short TESTING OF NUMERICAL SOLUTION OF THE PROBLEM OF DETERMINING SOURCES OF MAGNETOSTATIC FIELD IN MAGNETIZED MEDIUM
title_full TESTING OF NUMERICAL SOLUTION OF THE PROBLEM OF DETERMINING SOURCES OF MAGNETOSTATIC FIELD IN MAGNETIZED MEDIUM
title_fullStr TESTING OF NUMERICAL SOLUTION OF THE PROBLEM OF DETERMINING SOURCES OF MAGNETOSTATIC FIELD IN MAGNETIZED MEDIUM
title_full_unstemmed TESTING OF NUMERICAL SOLUTION OF THE PROBLEM OF DETERMINING SOURCES OF MAGNETOSTATIC FIELD IN MAGNETIZED MEDIUM
title_sort testing of numerical solution of the problem of determining sources of magnetostatic field in magnetized medium
title_alt ТЕСТИРОВАНИЕ ЧИСЛЕННОГО РЕШЕНИЯ ЗАДАЧИ ОПРЕДЕЛЕНИЯ ИСТОЧНИКОВ МАГНИТОСТАТИЧЕСКОГО ПОЛЯ В НАМАГНИЧИВАЕМОЙ СРЕДЕ
description Purpose. Testing of numerical solution algorithm for integral equation for calculation of plane meridian magnetostatic field source distribution at interfaces of piecewise homogeneous magnetized medium by means of electrostatic analogy. Methodology. The piecewise homogeneous medium consists of three regions with different magnetic permeabilities: the shell of arbitrary meridian section, external unlimited medium outside the shell, and the medium inside the shell. For testing external homogeneous magnetic field effect on spherical shell is considered. The analytical solution of this problem on the basis of electrostatic analogy from the solution of the problem uniform electrostatic field effect on dielectric shell is obtained. We have compared results of numerical solution of integral equation with the data obtained by means of analytical solution at the variation of magnetic permeabilities of regions of medium. Results. Integral equation and the algorithm of its numerical solution for calculation of source field distribution at the boundaries of piecewise homogeneous medium is validated. Testing of integral equations correctness for calculation of fictitious magnetic charges distribution on axisymmetric boundaries of piecewise homogeneous magnetized medium and algorithms of their numerical solutions can be carried out by means of analytical solutions of problems of homogeneous electrostatic field effect analysis on piecewise homogeneous dielectric medium with central symmetry of boundaries – single-layer and multilayer spherical shells. In the case of spherical shell in wide range of values of the parameter λk, including close to ± 1, numerical solution of integral equation is stable, and relative error in calculating of fictitious magnetic charges surface density and magnetic field intensity inside the shell is from tenths of a percent up to several percent except for the cases of very small values of these quantities. Originality. The use analytical solutions for problems of calculation of external electrostatic field effect on piecewise homogeneous dielectric bodies for testing integral equations of magnetostatics and algorithms for their numerical solutions. Practical value. The described method of testing integral equations of magnetostatics and their numerical solutions can be used for calculation of magnetic fields of spacecraft control system electromagnets.
publisher National Technical University "Kharkiv Polytechnic Institute" and State Institution “Institute of Technical Problems of Magnetism of the National Academy of Sciences of Ukraine”
publishDate 2017
url http://eie.khpi.edu.ua/article/view/2074-272X.2017.6.06
work_keys_str_mv AT mikhailovvm testingofnumericalsolutionoftheproblemofdeterminingsourcesofmagnetostaticfieldinmagnetizedmedium
AT chunikhinkv testingofnumericalsolutionoftheproblemofdeterminingsourcesofmagnetostaticfieldinmagnetizedmedium
AT mikhailovvm testirovaniečislennogorešeniâzadačiopredeleniâistočnikovmagnitostatičeskogopolâvnamagničivaemojsrede
AT chunikhinkv testirovaniečislennogorešeniâzadačiopredeleniâistočnikovmagnitostatičeskogopolâvnamagničivaemojsrede
first_indexed 2024-06-01T14:38:50Z
last_indexed 2024-06-01T14:38:50Z
_version_ 1800669999449243648
spelling eiekhpieduua-article-1163832017-12-27T16:15:33Z TESTING OF NUMERICAL SOLUTION OF THE PROBLEM OF DETERMINING SOURCES OF MAGNETOSTATIC FIELD IN MAGNETIZED MEDIUM ТЕСТИРОВАНИЕ ЧИСЛЕННОГО РЕШЕНИЯ ЗАДАЧИ ОПРЕДЕЛЕНИЯ ИСТОЧНИКОВ МАГНИТОСТАТИЧЕСКОГО ПОЛЯ В НАМАГНИЧИВАЕМОЙ СРЕДЕ Mikhailov, V. M. Chunikhin, K. V. plane meridian magnetostatic field piecewise homogeneous magnetized medium integral equation electrostatic analogy fictitious magnetic charge 621.3 плоскомеридианное магнитостатическое поле кусочно-однородная намагничиваемая среда интегральное уравнение электростатическая аналогия фиктивный магнитный заряд 621.3 Purpose. Testing of numerical solution algorithm for integral equation for calculation of plane meridian magnetostatic field source distribution at interfaces of piecewise homogeneous magnetized medium by means of electrostatic analogy. Methodology. The piecewise homogeneous medium consists of three regions with different magnetic permeabilities: the shell of arbitrary meridian section, external unlimited medium outside the shell, and the medium inside the shell. For testing external homogeneous magnetic field effect on spherical shell is considered. The analytical solution of this problem on the basis of electrostatic analogy from the solution of the problem uniform electrostatic field effect on dielectric shell is obtained. We have compared results of numerical solution of integral equation with the data obtained by means of analytical solution at the variation of magnetic permeabilities of regions of medium. Results. Integral equation and the algorithm of its numerical solution for calculation of source field distribution at the boundaries of piecewise homogeneous medium is validated. Testing of integral equations correctness for calculation of fictitious magnetic charges distribution on axisymmetric boundaries of piecewise homogeneous magnetized medium and algorithms of their numerical solutions can be carried out by means of analytical solutions of problems of homogeneous electrostatic field effect analysis on piecewise homogeneous dielectric medium with central symmetry of boundaries – single-layer and multilayer spherical shells. In the case of spherical shell in wide range of values of the parameter λk, including close to ± 1, numerical solution of integral equation is stable, and relative error in calculating of fictitious magnetic charges surface density and magnetic field intensity inside the shell is from tenths of a percent up to several percent except for the cases of very small values of these quantities. Originality. The use analytical solutions for problems of calculation of external electrostatic field effect on piecewise homogeneous dielectric bodies for testing integral equations of magnetostatics and algorithms for their numerical solutions. Practical value. The described method of testing integral equations of magnetostatics and their numerical solutions can be used for calculation of magnetic fields of spacecraft control system electromagnets. Выполнена проверка правильности интегрального уравнения второго рода для расчета распределения источников плоскомеридианного магнитостатического поля на границах раздела кусочно-однородной намагничиваемой среды и его численного решения. Для этого использованы электростатическая аналогия и аналитическое решение задачи о воздействии однородного электростатического поля на сферическую диэлектрическую оболочку в кусочно-однородной диэлектрической среде. Подтверждена правильность интегрального уравнения и его численного решения при помощи аппроксимирующей системы алгебраических уравнений. Сделан анализ влияния магнитных проницаемостей однородных областей среды на распределение фиктивных магнитных зарядов на поверхностях и напряженность магнитного поля внутри сферической оболочки. National Technical University "Kharkiv Polytechnic Institute" and State Institution “Institute of Technical Problems of Magnetism of the National Academy of Sciences of Ukraine” 2017-11-27 Article Article application/pdf application/pdf http://eie.khpi.edu.ua/article/view/2074-272X.2017.6.06 10.20998/2074-272X.2017.6.06 Electrical Engineering & Electromechanics; No. 6 (2017); 42-46 Электротехника и Электромеханика; № 6 (2017); 42-46 Електротехніка і Електромеханіка; № 6 (2017); 42-46 2309-3404 2074-272X en uk http://eie.khpi.edu.ua/article/view/2074-272X.2017.6.06/110437 http://eie.khpi.edu.ua/article/view/2074-272X.2017.6.06/110438 Copyright (c) 2017 V. M. Mikhailov, K. V. Chunikhin https://creativecommons.org/licenses/by-nc/4.0