DEVELOPMENT OF EXCITATION STRUCTURE RBF-METAMODELS OF MOVING CONCENTRIC EDDY CURRENT PROBE

Introduction. The work is devoted to metamodels creation of surface circular concentric eddy current probe. Formulation of the problem. In the problem of surface circular concentric eddy current probe synthesis in the general formulation, apriori given desired eddy currents density distribution in t...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2019
Автори: Halchenko, V. Ya., Trembovetska, R. V., Tychkov, V. V.
Формат: Стаття
Мова:English
Ukrainian
Опубліковано: National Technical University "Kharkiv Polytechnic Institute" and Аnatolii Pidhornyi Institute of Power Machines and Systems of NAS of Ukraine 2019
Теми:
Онлайн доступ:http://eie.khpi.edu.ua/article/view/2074-272X.2019.2.05
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Electrical Engineering & Electromechanics

Репозитарії

Electrical Engineering & Electromechanics
id eiekhpieduua-article-164395
record_format ojs
institution Electrical Engineering & Electromechanics
baseUrl_str
datestamp_date 2019-04-16T12:30:41Z
collection OJS
language English
Ukrainian
topic surface eddy current probe
eddy currents density distribution
excitation structure
mathematical model
optimal synthesis
computer experiment plan
LPτ–sequence
RBF–metamodel
neural networks committee
620.179.147
519.853.6
spellingShingle surface eddy current probe
eddy currents density distribution
excitation structure
mathematical model
optimal synthesis
computer experiment plan
LPτ–sequence
RBF–metamodel
neural networks committee
620.179.147
519.853.6
Halchenko, V. Ya.
Trembovetska, R. V.
Tychkov, V. V.
DEVELOPMENT OF EXCITATION STRUCTURE RBF-METAMODELS OF MOVING CONCENTRIC EDDY CURRENT PROBE
topic_facet surface eddy current probe
eddy currents density distribution
excitation structure
mathematical model
optimal synthesis
computer experiment plan
LPτ–sequence
RBF–metamodel
neural networks committee
620.179.147
519.853.6
накладний вихрострумовий перетворювач
розподіл густини вихрових струмів
структура збудження
математична модель
оптимальний синтез
комп’ютерний план експерименту
ЛПτ–послідовність
RBF–метамодель
комітет нейронних мереж
620.179.147
519.853.6
format Article
author Halchenko, V. Ya.
Trembovetska, R. V.
Tychkov, V. V.
author_facet Halchenko, V. Ya.
Trembovetska, R. V.
Tychkov, V. V.
author_sort Halchenko, V. Ya.
title DEVELOPMENT OF EXCITATION STRUCTURE RBF-METAMODELS OF MOVING CONCENTRIC EDDY CURRENT PROBE
title_short DEVELOPMENT OF EXCITATION STRUCTURE RBF-METAMODELS OF MOVING CONCENTRIC EDDY CURRENT PROBE
title_full DEVELOPMENT OF EXCITATION STRUCTURE RBF-METAMODELS OF MOVING CONCENTRIC EDDY CURRENT PROBE
title_fullStr DEVELOPMENT OF EXCITATION STRUCTURE RBF-METAMODELS OF MOVING CONCENTRIC EDDY CURRENT PROBE
title_full_unstemmed DEVELOPMENT OF EXCITATION STRUCTURE RBF-METAMODELS OF MOVING CONCENTRIC EDDY CURRENT PROBE
title_sort development of excitation structure rbf-metamodels of moving concentric eddy current probe
title_alt ПОБУДОВА RBF-МЕТАМОДЕЛЕЙ СТРУКТУР ЗБУДЖЕННЯ РУХОМОГО КОНЦЕНТРИЧНОГО ВИХРОСТРУМОВОГО ПЕРЕТВОРЮВАЧА
description Introduction. The work is devoted to metamodels creation of surface circular concentric eddy current probe. Formulation of the problem. In the problem of surface circular concentric eddy current probe synthesis in the general formulation, apriori given desired eddy currents density distribution in the control zone was used. The realization of the optimal synthesis problem involves a multiple solution to the analysis problem for each current structure of numerical calculations excitation, which are very costly in terms of computational and time costs, which makes it impossible to solve the synthesis problem in the classical formulation. By solving the critical resource intensiveness problem, there is the surrogate optimization technology using of that uses the surface circular concentric eddy current probe metamodel, which is much simpler in realization and is an approximation of the exact electrodynamic model. Goal. Creation of surface circular concentric eddy current probe RBF-metamodels, which can be used to calculate eddy currents density distribution in the control zone and suitable for use in optimal synthesis problems. Method. To develop an approximation model, a mathematical apparatus for artificial neural networks, namely, RBF–networks, has been used, whose accuracy has been increased with the help of the neural networks committee. Correction of errors in the committee was reduced by applying the bagging procedure. During the network training the regularization technique is used, which avoids re-learning the neural network. The computer experiment plan was performed using the Sobol LPt–sequences. The obtained multivariable regression model quality evaluation was performed by checking the response surface reproducibility correctness in the entire region of variables variation. Results. The modelling of eddy currents density distribution calculations on exact electrodynamic mathematical models in the experimental plan points are carried out. For the immovable and moving surface circular concentric eddy current probe, RBF–metamodels were constructed with varying spatial coordinates and radius. Scientific novelty. Software was developed for eddy currents density distribution calculation in the surface circular concentric eddy current probe control zone taking into account the speed effect on exact electrodynamic mathematical models and for forming experiment plan points using the Sobol LPt–sequences. The geometric surface circular concentric eddy current probe excitation structures models with homogeneous sensitivity for their optimal synthesis taking into account the speed effect are proposed. Improved computing technology for constructing metamodels. The RBF-metamodels of the surface circular concentric eddy current probe are built and based on the speed effect. Practical significance. The work results can be used in the surface circular concentric eddy current probe synthesis with an apriori given eddy currents density distribution in the control zone. 
publisher National Technical University "Kharkiv Polytechnic Institute" and Аnatolii Pidhornyi Institute of Power Machines and Systems of NAS of Ukraine
publishDate 2019
url http://eie.khpi.edu.ua/article/view/2074-272X.2019.2.05
work_keys_str_mv AT halchenkovya developmentofexcitationstructurerbfmetamodelsofmovingconcentriceddycurrentprobe
AT trembovetskarv developmentofexcitationstructurerbfmetamodelsofmovingconcentriceddycurrentprobe
AT tychkovvv developmentofexcitationstructurerbfmetamodelsofmovingconcentriceddycurrentprobe
AT halchenkovya pobudovarbfmetamodelejstrukturzbudžennâruhomogokoncentričnogovihrostrumovogoperetvorûvača
AT trembovetskarv pobudovarbfmetamodelejstrukturzbudžennâruhomogokoncentričnogovihrostrumovogoperetvorûvača
AT tychkovvv pobudovarbfmetamodelejstrukturzbudžennâruhomogokoncentričnogovihrostrumovogoperetvorûvača
first_indexed 2025-07-17T11:47:33Z
last_indexed 2025-07-17T11:47:33Z
_version_ 1850411833379258368
spelling eiekhpieduua-article-1643952019-04-16T12:30:41Z DEVELOPMENT OF EXCITATION STRUCTURE RBF-METAMODELS OF MOVING CONCENTRIC EDDY CURRENT PROBE ПОБУДОВА RBF-МЕТАМОДЕЛЕЙ СТРУКТУР ЗБУДЖЕННЯ РУХОМОГО КОНЦЕНТРИЧНОГО ВИХРОСТРУМОВОГО ПЕРЕТВОРЮВАЧА Halchenko, V. Ya. Trembovetska, R. V. Tychkov, V. V. surface eddy current probe eddy currents density distribution excitation structure mathematical model optimal synthesis computer experiment plan LPτ–sequence RBF–metamodel neural networks committee 620.179.147 519.853.6 накладний вихрострумовий перетворювач розподіл густини вихрових струмів структура збудження математична модель оптимальний синтез комп’ютерний план експерименту ЛПτ–послідовність RBF–метамодель комітет нейронних мереж 620.179.147 519.853.6 Introduction. The work is devoted to metamodels creation of surface circular concentric eddy current probe. Formulation of the problem. In the problem of surface circular concentric eddy current probe synthesis in the general formulation, apriori given desired eddy currents density distribution in the control zone was used. The realization of the optimal synthesis problem involves a multiple solution to the analysis problem for each current structure of numerical calculations excitation, which are very costly in terms of computational and time costs, which makes it impossible to solve the synthesis problem in the classical formulation. By solving the critical resource intensiveness problem, there is the surrogate optimization technology using of that uses the surface circular concentric eddy current probe metamodel, which is much simpler in realization and is an approximation of the exact electrodynamic model. Goal. Creation of surface circular concentric eddy current probe RBF-metamodels, which can be used to calculate eddy currents density distribution in the control zone and suitable for use in optimal synthesis problems. Method. To develop an approximation model, a mathematical apparatus for artificial neural networks, namely, RBF–networks, has been used, whose accuracy has been increased with the help of the neural networks committee. Correction of errors in the committee was reduced by applying the bagging procedure. During the network training the regularization technique is used, which avoids re-learning the neural network. The computer experiment plan was performed using the Sobol LPt–sequences. The obtained multivariable regression model quality evaluation was performed by checking the response surface reproducibility correctness in the entire region of variables variation. Results. The modelling of eddy currents density distribution calculations on exact electrodynamic mathematical models in the experimental plan points are carried out. For the immovable and moving surface circular concentric eddy current probe, RBF–metamodels were constructed with varying spatial coordinates and radius. Scientific novelty. Software was developed for eddy currents density distribution calculation in the surface circular concentric eddy current probe control zone taking into account the speed effect on exact electrodynamic mathematical models and for forming experiment plan points using the Sobol LPt–sequences. The geometric surface circular concentric eddy current probe excitation structures models with homogeneous sensitivity for their optimal synthesis taking into account the speed effect are proposed. Improved computing technology for constructing metamodels. The RBF-metamodels of the surface circular concentric eddy current probe are built and based on the speed effect. Practical significance. The work results can be used in the surface circular concentric eddy current probe synthesis with an apriori given eddy currents density distribution in the control zone.  Розроблено програмне забезпечення для розрахунку розподілу густини вихрових струмів в зоні контролю накладного вихрострумового перетворювача із врахуванням ефекту швидкості за «точними» електродинамічними математичними моделями. Розроблено програмне забезпечення для формування точок плану експерименту із використанням ЛПτ–послідовностей, що дозволило здійснювати відбір планів з рівномірним заповненням точками гіперпростору пошуку. Для нерухомого та рухомого накладних вихрострумових перетворювачів створено нейромережеві метамоделі на радіально-базисній функції Гауса. Оцінено адекватність та інформативність отриманих метамоделей накладних вихрострумових перетворювачів. Результати дослідження можуть бути використані при синтезі рухомих накладних вихрострумових перетворювачів із апріорі заданим розподілом густини вихрових струмів в зоні контролю.  National Technical University "Kharkiv Polytechnic Institute" and Аnatolii Pidhornyi Institute of Power Machines and Systems of NAS of Ukraine 2019-04-16 Article Article application/pdf application/pdf http://eie.khpi.edu.ua/article/view/2074-272X.2019.2.05 10.20998/2074-272X.2019.2.05 Electrical Engineering & Electromechanics; No. 2 (2019); 28-38 Электротехника и Электромеханика; № 2 (2019); 28-38 Електротехніка і Електромеханіка; № 2 (2019); 28-38 2309-3404 2074-272X en uk http://eie.khpi.edu.ua/article/view/2074-272X.2019.2.05/163438 http://eie.khpi.edu.ua/article/view/2074-272X.2019.2.05/163439 Copyright (c) 2019 V. Ya. Halchenko, R. V. Trembovetska, V. V. Tychkov https://creativecommons.org/licenses/by-nc/4.0