SIMULTANEOUS ALLOCATION OF MULTIPLE DISTRIBUTED GENERATION AND CAPACITORS IN RADIAL NETWORK USING GENETIC-SALP SWARM ALGORITHM

Purpose. In recent years, the problem of allocation of distributed generation and capacitors banks has received special attention from many utilities and researchers. The present paper deals with single and simultaneous placement of dispersed generation and capacitors banks in radial distribution ne...

Full description

Saved in:
Bibliographic Details
Date:2020
Main Authors: Djabali, Chabane, Bouktir, Tarek
Format: Article
Language:English
Published: National Technical University "Kharkiv Polytechnic Institute" and Аnatolii Pidhornyi Institute of Power Machines and Systems of NAS of Ukraine 2020
Subjects:
Online Access:http://eie.khpi.edu.ua/article/view/2074-272X.2020.4.08
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Electrical Engineering & Electromechanics

Institution

Electrical Engineering & Electromechanics
id eiekhpieduua-article-210501
record_format ojs
spelling eiekhpieduua-article-2105012020-08-25T11:26:25Z SIMULTANEOUS ALLOCATION OF MULTIPLE DISTRIBUTED GENERATION AND CAPACITORS IN RADIAL NETWORK USING GENETIC-SALP SWARM ALGORITHM SIMULTANEOUS ALLOCATION OF MULTIPLE DISTRIBUTED GENERATION AND CAPACITORS IN RADIAL NETWORK USING GENETIC-SALP SWARM ALGORITHM Djabali, Chabane Bouktir, Tarek genetic algorithm salp swarm algorithm real power losses distributed generation capacitors 621.3 генетический алгоритм алгоритм роя сальпов реальные потери мощности распределенная генерация конденсаторы 621.3 Purpose. In recent years, the problem of allocation of distributed generation and capacitors banks has received special attention from many utilities and researchers. The present paper deals with single and simultaneous placement of dispersed generation and capacitors banks in radial distribution network with different load levels: light, medium and peak using genetic-salp swarm algorithm. The developed genetic-salp swarm algorithm (GA-SSA) hybrid optimization takes the system input variables of radial distribution network to find the optimal solutions to maximize the benefits of their installation with minimum cost to minimize the active and reactive power losses and improve the voltage profile. The validation of the proposed hybrid genetic-salp swarm algorithm was carried out on IEEE 34-bus test systems and real Algerian distributed network of Djanet (far south of Algeria) with 112-bus. The numerical results endorse the ability of the proposed algorithm to achieve a better results with higher accuracy compared to the result obtained by salp swarm algorithm, genetic algorithm, particle swarm optimization and the hybrid particle swarm optimization algorithms. Цель. В последние годы задача размещения распределенной генерации и батарей конденсаторов привлекает особое внимание многих организаций и исследователей. В данной работе рассмотрены отдельное и совместное размещение распределенной генерации  и батарей конденсаторов в радиальной распределительной сети при различных уровнях нагрузки: слабом, среднем и пиковом с использованием алгоритма генетического роя сальпов (genetic-salp swarm algorithm). Разработанный алгоритм гибридной оптимизации генетического роя сальпов (GA-SSA) использует системные входные переменные радиальной распределительной сети для поиска оптимальных решений с целью максимизации преимуществ их установки с минимальными затратами для минимизации потерь активной и реактивной мощности и улучшения профиля напряжения. Тестирование предложенного алгоритма гибридной оптимизации генетического роя сальпов было проведено на экспериментальных 34-шинных системах IEEE и реальной 112-шиной алжирской распределенной сети Джанета (крайний юг Алжира). Численные результаты подтверждают способность предложенного алгоритма достигать лучших результатов с большей точностью по сравнению с результатом, полученным методом роя сальпов, генетическим алгоритмом, оптимизацией роя частиц и алгоритмами гибридной оптимизации роя частиц. National Technical University "Kharkiv Polytechnic Institute" and Аnatolii Pidhornyi Institute of Power Machines and Systems of NAS of Ukraine 2020-08-24 Article Article application/pdf http://eie.khpi.edu.ua/article/view/2074-272X.2020.4.08 10.20998/2074-272X.2020.4.08 Electrical Engineering & Electromechanics; No. 4 (2020); 59-66 Электротехника и Электромеханика; № 4 (2020); 59-66 Електротехніка і Електромеханіка; № 4 (2020); 59-66 2309-3404 2074-272X en http://eie.khpi.edu.ua/article/view/2074-272X.2020.4.08/210585 Copyright (c) 2020 Chabane Djabali, Tarek Bouktir https://creativecommons.org/licenses/by-nc/4.0
institution Electrical Engineering & Electromechanics
baseUrl_str
datestamp_date 2020-08-25T11:26:25Z
collection OJS
language English
topic genetic algorithm
salp swarm algorithm
real power losses
distributed generation
capacitors
621.3
spellingShingle genetic algorithm
salp swarm algorithm
real power losses
distributed generation
capacitors
621.3
Djabali, Chabane
Bouktir, Tarek
SIMULTANEOUS ALLOCATION OF MULTIPLE DISTRIBUTED GENERATION AND CAPACITORS IN RADIAL NETWORK USING GENETIC-SALP SWARM ALGORITHM
topic_facet genetic algorithm
salp swarm algorithm
real power losses
distributed generation
capacitors
621.3
генетический алгоритм
алгоритм роя сальпов
реальные потери мощности
распределенная генерация
конденсаторы
621.3
format Article
author Djabali, Chabane
Bouktir, Tarek
author_facet Djabali, Chabane
Bouktir, Tarek
author_sort Djabali, Chabane
title SIMULTANEOUS ALLOCATION OF MULTIPLE DISTRIBUTED GENERATION AND CAPACITORS IN RADIAL NETWORK USING GENETIC-SALP SWARM ALGORITHM
title_short SIMULTANEOUS ALLOCATION OF MULTIPLE DISTRIBUTED GENERATION AND CAPACITORS IN RADIAL NETWORK USING GENETIC-SALP SWARM ALGORITHM
title_full SIMULTANEOUS ALLOCATION OF MULTIPLE DISTRIBUTED GENERATION AND CAPACITORS IN RADIAL NETWORK USING GENETIC-SALP SWARM ALGORITHM
title_fullStr SIMULTANEOUS ALLOCATION OF MULTIPLE DISTRIBUTED GENERATION AND CAPACITORS IN RADIAL NETWORK USING GENETIC-SALP SWARM ALGORITHM
title_full_unstemmed SIMULTANEOUS ALLOCATION OF MULTIPLE DISTRIBUTED GENERATION AND CAPACITORS IN RADIAL NETWORK USING GENETIC-SALP SWARM ALGORITHM
title_sort simultaneous allocation of multiple distributed generation and capacitors in radial network using genetic-salp swarm algorithm
title_alt SIMULTANEOUS ALLOCATION OF MULTIPLE DISTRIBUTED GENERATION AND CAPACITORS IN RADIAL NETWORK USING GENETIC-SALP SWARM ALGORITHM
description Purpose. In recent years, the problem of allocation of distributed generation and capacitors banks has received special attention from many utilities and researchers. The present paper deals with single and simultaneous placement of dispersed generation and capacitors banks in radial distribution network with different load levels: light, medium and peak using genetic-salp swarm algorithm. The developed genetic-salp swarm algorithm (GA-SSA) hybrid optimization takes the system input variables of radial distribution network to find the optimal solutions to maximize the benefits of their installation with minimum cost to minimize the active and reactive power losses and improve the voltage profile. The validation of the proposed hybrid genetic-salp swarm algorithm was carried out on IEEE 34-bus test systems and real Algerian distributed network of Djanet (far south of Algeria) with 112-bus. The numerical results endorse the ability of the proposed algorithm to achieve a better results with higher accuracy compared to the result obtained by salp swarm algorithm, genetic algorithm, particle swarm optimization and the hybrid particle swarm optimization algorithms.
publisher National Technical University "Kharkiv Polytechnic Institute" and Аnatolii Pidhornyi Institute of Power Machines and Systems of NAS of Ukraine
publishDate 2020
url http://eie.khpi.edu.ua/article/view/2074-272X.2020.4.08
work_keys_str_mv AT djabalichabane simultaneousallocationofmultipledistributedgenerationandcapacitorsinradialnetworkusinggeneticsalpswarmalgorithm
AT bouktirtarek simultaneousallocationofmultipledistributedgenerationandcapacitorsinradialnetworkusinggeneticsalpswarmalgorithm
first_indexed 2025-07-17T11:48:10Z
last_indexed 2025-07-17T11:48:10Z
_version_ 1850411920836788224