STABILITY ANALYSIS OF HYBRID ENERGY STORAGE BASED ON SUPERCAPACITOR AND BATTERY

The aim of the work is to analyze the stability of the battery-supercapacitor hybrid storage of power supply for resistance micro-welding equipment, considering the possible variation of the system parameters and taking into account parallel series resistance of the circuit components. Methodology....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2020
Hauptverfasser: Bondarenko, O. F., Kozhushko, Yu. V., Karbivska, T. O., Zheliazkov, Y. O., Safronov, P. S.
Format: Artikel
Sprache:English
Ukrainian
Veröffentlicht: National Technical University "Kharkiv Polytechnic Institute" and Аnatolii Pidhornyi Institute of Power Machines and Systems of NAS of Ukraine 2020
Schlagworte:
Online Zugang:http://eie.khpi.edu.ua/article/view/2074-272X.2020.5.05
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Electrical Engineering & Electromechanics

Institution

Electrical Engineering & Electromechanics
id eiekhpieduua-article-214961
record_format ojs
institution Electrical Engineering & Electromechanics
baseUrl_str
datestamp_date 2020-10-28T18:22:38Z
collection OJS
language English
Ukrainian
topic hybrid energy storage
SEPIC converter
stability analysis
state-space average method
micro resistance welding
621.314
621.311.6
spellingShingle hybrid energy storage
SEPIC converter
stability analysis
state-space average method
micro resistance welding
621.314
621.311.6
Bondarenko, O. F.
Kozhushko, Yu. V.
Karbivska, T. O.
Zheliazkov, Y. O.
Safronov, P. S.
STABILITY ANALYSIS OF HYBRID ENERGY STORAGE BASED ON SUPERCAPACITOR AND BATTERY
topic_facet комбінований ємнісний накопичувач енергії
SEPIC перетворювач
метод усереднення в просторі змінних стану
аналіз стійкості
контактне мікрозварювання
621.314
621.311.6
hybrid energy storage
SEPIC converter
stability analysis
state-space average method
micro resistance welding
621.314
621.311.6
format Article
author Bondarenko, O. F.
Kozhushko, Yu. V.
Karbivska, T. O.
Zheliazkov, Y. O.
Safronov, P. S.
author_facet Bondarenko, O. F.
Kozhushko, Yu. V.
Karbivska, T. O.
Zheliazkov, Y. O.
Safronov, P. S.
author_sort Bondarenko, O. F.
title STABILITY ANALYSIS OF HYBRID ENERGY STORAGE BASED ON SUPERCAPACITOR AND BATTERY
title_short STABILITY ANALYSIS OF HYBRID ENERGY STORAGE BASED ON SUPERCAPACITOR AND BATTERY
title_full STABILITY ANALYSIS OF HYBRID ENERGY STORAGE BASED ON SUPERCAPACITOR AND BATTERY
title_fullStr STABILITY ANALYSIS OF HYBRID ENERGY STORAGE BASED ON SUPERCAPACITOR AND BATTERY
title_full_unstemmed STABILITY ANALYSIS OF HYBRID ENERGY STORAGE BASED ON SUPERCAPACITOR AND BATTERY
title_sort stability analysis of hybrid energy storage based on supercapacitor and battery
title_alt СТІЙКІСТЬ КОМБІНОВАНОЇ СИСТЕМИ НАКОПИЧЕННЯ ЕНЕРГІЇ НА ОСНОВІ СУПЕРКОНДЕНСАТОРА ТА АКУМУЛЯТОРНОЇ БАТАРЕЇ
description The aim of the work is to analyze the stability of the battery-supercapacitor hybrid storage of power supply for resistance micro-welding equipment, considering the possible variation of the system parameters and taking into account parallel series resistance of the circuit components. Methodology. The sufficient accurate mathematical model of the hybrid energy storage system to stability analysis has been obtained by the state-space average method. According to the state-space averaging method, PWM switching converters are described by separate circuit topologies for each switching period. The system of differential equations for each time interval has been derived by use of the Kirchhoff rules. The small-signal model transfer function of the SEPIC converter has been obtained by applying the Laplace transform to linear state equations averaged over one switching cycle. Finally, the Nyquist stability criterion has been considered to evaluate the stability of the proposed energy storage system. Results. Bode diagrams of an open-loop system for different values of the duty cycle, average load current, and input voltage have been obtained by using MATLAB software. The gain margin ranges from 14.6 dB to 26.4 dB and the phase margin ranges from 45.4 degrees to 54.8 degrees. From these results, it is obvious that the proposed system meets the stability criteria regardless of the aforementioned parameter fluctuations. Originality. The high-efficiency energy storage system for micro resistance welding technology has been proposed. Developing of the energy storage system according to the battery semi-active hybrid topology enables to control the Li-ion battery discharge current within the maximum allowable value. SEPIC converter utilization ensures the high-efficient operation of the power supply despite the battery charge state. Moreover, this topology allows implementing series and parallel configuration of both batteries and supercapacitors to obtain the required value of voltage and current. Practical significance. The mathematical model of the SEPIC converter has been developed by applying the state-space averaging technique. The stability analysis for parameter variation, such as duty cycle and the average load current, the input voltage has been performed by using Nyquist criteria. 
publisher National Technical University "Kharkiv Polytechnic Institute" and Аnatolii Pidhornyi Institute of Power Machines and Systems of NAS of Ukraine
publishDate 2020
url http://eie.khpi.edu.ua/article/view/2074-272X.2020.5.05
work_keys_str_mv AT bondarenkoof stabilityanalysisofhybridenergystoragebasedonsupercapacitorandbattery
AT kozhushkoyuv stabilityanalysisofhybridenergystoragebasedonsupercapacitorandbattery
AT karbivskato stabilityanalysisofhybridenergystoragebasedonsupercapacitorandbattery
AT zheliazkovyo stabilityanalysisofhybridenergystoragebasedonsupercapacitorandbattery
AT safronovps stabilityanalysisofhybridenergystoragebasedonsupercapacitorandbattery
AT bondarenkoof stíjkístʹkombínovanoísisteminakopičennâenergíínaosnovísuperkondensatorataakumulâtornoíbatareí
AT kozhushkoyuv stíjkístʹkombínovanoísisteminakopičennâenergíínaosnovísuperkondensatorataakumulâtornoíbatareí
AT karbivskato stíjkístʹkombínovanoísisteminakopičennâenergíínaosnovísuperkondensatorataakumulâtornoíbatareí
AT zheliazkovyo stíjkístʹkombínovanoísisteminakopičennâenergíínaosnovísuperkondensatorataakumulâtornoíbatareí
AT safronovps stíjkístʹkombínovanoísisteminakopičennâenergíínaosnovísuperkondensatorataakumulâtornoíbatareí
first_indexed 2025-07-17T11:48:13Z
last_indexed 2025-07-17T11:48:13Z
_version_ 1850411927184867328
spelling eiekhpieduua-article-2149612020-10-28T18:22:38Z STABILITY ANALYSIS OF HYBRID ENERGY STORAGE BASED ON SUPERCAPACITOR AND BATTERY СТІЙКІСТЬ КОМБІНОВАНОЇ СИСТЕМИ НАКОПИЧЕННЯ ЕНЕРГІЇ НА ОСНОВІ СУПЕРКОНДЕНСАТОРА ТА АКУМУЛЯТОРНОЇ БАТАРЕЇ Bondarenko, O. F. Kozhushko, Yu. V. Karbivska, T. O. Zheliazkov, Y. O. Safronov, P. S. комбінований ємнісний накопичувач енергії SEPIC перетворювач метод усереднення в просторі змінних стану аналіз стійкості контактне мікрозварювання 621.314 621.311.6 hybrid energy storage SEPIC converter stability analysis state-space average method micro resistance welding 621.314 621.311.6 The aim of the work is to analyze the stability of the battery-supercapacitor hybrid storage of power supply for resistance micro-welding equipment, considering the possible variation of the system parameters and taking into account parallel series resistance of the circuit components. Methodology. The sufficient accurate mathematical model of the hybrid energy storage system to stability analysis has been obtained by the state-space average method. According to the state-space averaging method, PWM switching converters are described by separate circuit topologies for each switching period. The system of differential equations for each time interval has been derived by use of the Kirchhoff rules. The small-signal model transfer function of the SEPIC converter has been obtained by applying the Laplace transform to linear state equations averaged over one switching cycle. Finally, the Nyquist stability criterion has been considered to evaluate the stability of the proposed energy storage system. Results. Bode diagrams of an open-loop system for different values of the duty cycle, average load current, and input voltage have been obtained by using MATLAB software. The gain margin ranges from 14.6 dB to 26.4 dB and the phase margin ranges from 45.4 degrees to 54.8 degrees. From these results, it is obvious that the proposed system meets the stability criteria regardless of the aforementioned parameter fluctuations. Originality. The high-efficiency energy storage system for micro resistance welding technology has been proposed. Developing of the energy storage system according to the battery semi-active hybrid topology enables to control the Li-ion battery discharge current within the maximum allowable value. SEPIC converter utilization ensures the high-efficient operation of the power supply despite the battery charge state. Moreover, this topology allows implementing series and parallel configuration of both batteries and supercapacitors to obtain the required value of voltage and current. Practical significance. The mathematical model of the SEPIC converter has been developed by applying the state-space averaging technique. The stability analysis for parameter variation, such as duty cycle and the average load current, the input voltage has been performed by using Nyquist criteria.  В роботі розглянуто комбінований ємнісний накопичувач енергії на основі акумуляторної батареї (АБ) та суперконденсатора джерела живлення для установки контактного мікрозварювання. Для забезпечення рівномірного споживання струму від АБ обрано напівактивну топологію АБ та перетворювач SEPIC (Single-Ended Primary-Inductor Converter). Методом усереднення в просторі змінних стану аналітично отримано математичну модель системи. З метою проведення аналізу стійкості комбінованого накопичувача при різних значеннях коефіцієнта заповнення імпульсів, струму навантаження та напруги АБ отримано передавальну характеристику системи керування. Результати аналізу показали, що запропонована система є стійкою при зміні параметрів у встановлених межах.  National Technical University "Kharkiv Polytechnic Institute" and Аnatolii Pidhornyi Institute of Power Machines and Systems of NAS of Ukraine 2020-10-26 Article Article application/pdf application/pdf http://eie.khpi.edu.ua/article/view/2074-272X.2020.5.05 10.20998/2074-272X.2020.5.05 Electrical Engineering & Electromechanics; No. 5 (2020); 31-37 Электротехника и Электромеханика; № 5 (2020); 31-37 Електротехніка і Електромеханіка; № 5 (2020); 31-37 2309-3404 2074-272X en uk http://eie.khpi.edu.ua/article/view/2074-272X.2020.5.05/215145 http://eie.khpi.edu.ua/article/view/2074-272X.2020.5.05/215146 Copyright (c) 2020 O. F. Bondarenko, Yu. V. Kozhushko, T. O. Karbivska, Y. O. Zheliazkov, P. S. Safronov https://creativecommons.org/licenses/by-nc/4.0