Fault diagnosis of power converters in a grid connected photovoltaic system using artificial neural networks

Introduction. The widespread use of photovoltaic systems in various applications has spotlighted the pressing requirement for reliability, efficiency and continuity of service. The main impediment to a more effective implementation has been the reliability of the power converters. Indeed, the presen...

Full description

Saved in:
Bibliographic Details
Date:2023
Main Authors: Mimouni, A., Laribi, S., Sebaa, M., Allaoui, T., Bengharbi, A. A.
Format: Article
Language:English
Published: National Technical University "Kharkiv Polytechnic Institute" and Аnatolii Pidhornyi Institute of Power Machines and Systems of NAS of Ukraine 2023
Subjects:
Online Access:http://eie.khpi.edu.ua/article/view/257489
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Electrical Engineering & Electromechanics

Institution

Electrical Engineering & Electromechanics
id eiekhpieduua-article-257489
record_format ojs
spelling eiekhpieduua-article-2574892023-01-04T13:48:14Z Fault diagnosis of power converters in a grid connected photovoltaic system using artificial neural networks Fault diagnosis of power converters in a grid connected photovoltaic system using artificial neural networks Mimouni, A. Laribi, S. Sebaa, M. Allaoui, T. Bengharbi, A. A. фотогальванічна система, підключена до мережі штучна нейронна мережа силові перетворювачі відмова IGBT при обриві кола виявлення несправностей grid connected photovoltaic system artificial neural network power converters open circuit failure of IGBT fault detection Introduction. The widespread use of photovoltaic systems in various applications has spotlighted the pressing requirement for reliability, efficiency and continuity of service. The main impediment to a more effective implementation has been the reliability of the power converters. Indeed, the presence of faults in power converters that can cause malfunctions in the photovoltaic system, which can reduce its performance. Novelty. This paper presents a technique for diagnosing open circuit failures in the switches (IGBTs) of power converters (DC-DC converters and three-phase inverters) in a grid-connected photovoltaic system. Purpose. To ensure supply continuity, a fault-diagnosis process is required throughout all phases of energy production, transfer, and conversion. Methods. The diagnostic approach is based on artificial neural networks and the extraction of features corresponding to the open circuit fault of the IGBT switch. This approach is based on the Clarke transformation of the three-phase currents of the inverter output as well as the calculation of the average value of these currents to determine the exact angle of the open circuit fault. Results. This method is able to effectively identify and localize single or multiple open circuit faults of the DC-DC converter IGBT switch or the three-phase inverter IGBT switches. Вступ. Широке використання фотоелектричних систем у різних застосуваннях висунуло на перший план нагальні вимоги до надійності, ефективності та безперервності обслуговування. Основною перешкодою для ефективнішого застосування була надійність силових перетворювачів. Справді, наявність несправностей у силових перетворювачах може спричинити збої в роботі фотоелектричної системи, що може знизити її продуктивність. Новизна. У цій статті представлена методика діагностики обриву кола в перемикачах (IGBT) силових перетворювачів (перетворювачів постійного струму та трифазних інверторів) у фотоелектричній системі, підключеній до мережі. Мета. Для забезпечення безперервності постачання потрібен процес діагностики несправностей на всіх етапах виробництва, передачі та перетворення енергії. Методи. Діагностичний підхід заснований на штучних нейронних мережах та вилучення ознак, що відповідають обриву кола IGBT-перемикача. Цей підхід ґрунтується на перетворенні Кларка трифазних струмів на виході інвертора, а т акож розрахунку середнього значення цих струмів для визначення точного кута обриву кола. Результати. Цей метод дозволяє ефективно ідентифікувати та локалізувати одиночні або множинні несправності розімкнутого кола IGBT-перемикача DC-DC перетворювача або IGBT-перемикача трифазного інвертора. National Technical University "Kharkiv Polytechnic Institute" and Аnatolii Pidhornyi Institute of Power Machines and Systems of NAS of Ukraine 2023-01-04 Article Article application/pdf http://eie.khpi.edu.ua/article/view/257489 10.20998/2074-272X.2023.1.04 Electrical Engineering & Electromechanics; No. 1 (2023); 25-30 Электротехника и Электромеханика; № 1 (2023); 25-30 Електротехніка і Електромеханіка; № 1 (2023); 25-30 2309-3404 2074-272X en http://eie.khpi.edu.ua/article/view/257489/266657 Copyright (c) 2022 A. Mimouni, S. Laribi, M. Sebaa, T. Allaoui, A. A. Bengharbi http://creativecommons.org/licenses/by-nc/4.0
institution Electrical Engineering & Electromechanics
baseUrl_str
datestamp_date 2023-01-04T13:48:14Z
collection OJS
language English
topic grid connected photovoltaic system
artificial neural network
power converters
open circuit failure of IGBT
fault detection
spellingShingle grid connected photovoltaic system
artificial neural network
power converters
open circuit failure of IGBT
fault detection
Mimouni, A.
Laribi, S.
Sebaa, M.
Allaoui, T.
Bengharbi, A. A.
Fault diagnosis of power converters in a grid connected photovoltaic system using artificial neural networks
topic_facet фотогальванічна система
підключена до мережі
штучна нейронна мережа
силові перетворювачі
відмова IGBT при обриві кола
виявлення несправностей
grid connected photovoltaic system
artificial neural network
power converters
open circuit failure of IGBT
fault detection
format Article
author Mimouni, A.
Laribi, S.
Sebaa, M.
Allaoui, T.
Bengharbi, A. A.
author_facet Mimouni, A.
Laribi, S.
Sebaa, M.
Allaoui, T.
Bengharbi, A. A.
author_sort Mimouni, A.
title Fault diagnosis of power converters in a grid connected photovoltaic system using artificial neural networks
title_short Fault diagnosis of power converters in a grid connected photovoltaic system using artificial neural networks
title_full Fault diagnosis of power converters in a grid connected photovoltaic system using artificial neural networks
title_fullStr Fault diagnosis of power converters in a grid connected photovoltaic system using artificial neural networks
title_full_unstemmed Fault diagnosis of power converters in a grid connected photovoltaic system using artificial neural networks
title_sort fault diagnosis of power converters in a grid connected photovoltaic system using artificial neural networks
title_alt Fault diagnosis of power converters in a grid connected photovoltaic system using artificial neural networks
description Introduction. The widespread use of photovoltaic systems in various applications has spotlighted the pressing requirement for reliability, efficiency and continuity of service. The main impediment to a more effective implementation has been the reliability of the power converters. Indeed, the presence of faults in power converters that can cause malfunctions in the photovoltaic system, which can reduce its performance. Novelty. This paper presents a technique for diagnosing open circuit failures in the switches (IGBTs) of power converters (DC-DC converters and three-phase inverters) in a grid-connected photovoltaic system. Purpose. To ensure supply continuity, a fault-diagnosis process is required throughout all phases of energy production, transfer, and conversion. Methods. The diagnostic approach is based on artificial neural networks and the extraction of features corresponding to the open circuit fault of the IGBT switch. This approach is based on the Clarke transformation of the three-phase currents of the inverter output as well as the calculation of the average value of these currents to determine the exact angle of the open circuit fault. Results. This method is able to effectively identify and localize single or multiple open circuit faults of the DC-DC converter IGBT switch or the three-phase inverter IGBT switches.
publisher National Technical University "Kharkiv Polytechnic Institute" and Аnatolii Pidhornyi Institute of Power Machines and Systems of NAS of Ukraine
publishDate 2023
url http://eie.khpi.edu.ua/article/view/257489
work_keys_str_mv AT mimounia faultdiagnosisofpowerconvertersinagridconnectedphotovoltaicsystemusingartificialneuralnetworks
AT laribis faultdiagnosisofpowerconvertersinagridconnectedphotovoltaicsystemusingartificialneuralnetworks
AT sebaam faultdiagnosisofpowerconvertersinagridconnectedphotovoltaicsystemusingartificialneuralnetworks
AT allaouit faultdiagnosisofpowerconvertersinagridconnectedphotovoltaicsystemusingartificialneuralnetworks
AT bengharbiaa faultdiagnosisofpowerconvertersinagridconnectedphotovoltaicsystemusingartificialneuralnetworks
first_indexed 2025-07-17T11:49:06Z
last_indexed 2025-07-17T11:49:06Z
_version_ 1850412047242625024