Tilt-fractional order proportional integral derivative control for DC motor using particle swarm optimization

Introduction. Recently, the most desired goal in DC motor control is to achieve a good robustness and tracking dynamic of the set-point reference speed of the feedback control system. Problem. The used model should be as general as possible and consistently represent systems heterogeneous (which may...

Full description

Saved in:
Bibliographic Details
Date:2023
Main Authors: Amieur, T., Taibi, D., Kahla, S., Bechouat, M., Sedraoui, M.
Format: Article
Language:English
Published: National Technical University "Kharkiv Polytechnic Institute" and Аnatolii Pidhornyi Institute of Power Machines and Systems of NAS of Ukraine 2023
Subjects:
Online Access:http://eie.khpi.edu.ua/article/view/259730
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Electrical Engineering & Electromechanics

Institution

Electrical Engineering & Electromechanics
Description
Summary:Introduction. Recently, the most desired goal in DC motor control is to achieve a good robustness and tracking dynamic of the set-point reference speed of the feedback control system. Problem. The used model should be as general as possible and consistently represent systems heterogeneous (which may contain electrical, mechanical, thermal, magnetic and so on). Goal. In this paper, the robust tilt-fractional order proportional integral derivative control is proposed. The objective is to optimize the controller parameters from solving the criterion integral time absolute error by particle swarm optimization. The control strategy is applied on DC motor to validate the efficiency of the proposed idea. Methods. The proposed control technique is applied on DC motor where its dynamic behavior is modeled by external disturbances and measurement noises. Novelty. The proposed control strategy, the synthesized robust tilt-fractional order proportional integral derivative speed controller is applied on the DC motor. Their performance and robustness are compared to those provided by a proportional integral derivative and fractional order proportional integral derivative controllers. Results. This comparison reveals superiority of the proposed robust tilt-fractional order proportional integral derivative speed controller over the remaining controllers in terms of robustness and tracking dynamic of the set-point reference speed with reduced control energy.