Solar shunt active power filter based on optimized direct power control strategy with disturbance rejection principle

Introduction. This paper focuses on a renewable energy system coupled to a dual purpose power grid via a parallel active power filter for injecting photovoltaic energy into the grid and improving the power quality in the presence of the non-linear load. The novelty of the work consists in the combin...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2024
Автори: Boudechiche, G., Aissa, O., Sarra, M., Griche, I.
Формат: Стаття
Мова:English
Опубліковано: National Technical University "Kharkiv Polytechnic Institute" and State Institution “Institute of Technical Problems of Magnetism of the National Academy of Sciences of Ukraine” 2024
Теми:
Онлайн доступ:http://eie.khpi.edu.ua/article/view/286080
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Electrical Engineering & Electromechanics

Репозитарії

Electrical Engineering & Electromechanics
Опис
Резюме:Introduction. This paper focuses on a renewable energy system coupled to a dual purpose power grid via a parallel active power filter for injecting photovoltaic energy into the grid and improving the power quality in the presence of the non-linear load. The novelty of the work consists in the combination of two advanced techniques – Fuzzy Logic Controller (FLC) and the optimized Anti-Windup Fractional Order Proportional-Integral Differentiator (AW-FOPID) regulator based on Particle Swarm Optimization with the Spreading Factor (PSO-SF) algorithm, applied to the improved Direct Power Control (DPC) strategy under different conditions related to climate changes and healthy or infected electrical network. Purpose. Its main role is to improve the power quality and reject the perturbations deforming the electrical network under distorted, unbalanced and balanced grid voltage conditions. Besides, the FLC is employed the Maximum Power Point Tracking (MPPT) under any weather conditions. In addition, the optimized AW-FOPID controller leads to keep the DC bus voltage at its reference value with small undershoots and overshoots in the voltage with a short response time in steady or dynamic states. Methods. The rejection of disturbances affecting the grid is offered by the improved DPC. On the other hand, an intelligent method based on fuzzy logic was used MPPT under any weather conditions. Furthermore, an AW-FOPID regulator based on PSO-SF algorithm is used to keep the DC bus voltage at its reference value with small undershoots and overshoots in the voltage, while keeping a fast response time. Results. The proposed system control is evaluated in various states of power source: distorted, unbalanced, and balanced by simulation using MATLAB/Simulink. The simulation results illustrate the effectiveness and performance of the studied control strategies. References 26, tables 8, figures 16.