Determination of the maximum mechanical stresses in the insulating material around a defect with a high dielectric permittivity in an electrostatic field

Introduction. All insulating macrohomogeneous solid materials change shape under the influence of an electric field. Problem. The presence of minor defects changes the distribution of an electric field and causes a significant concentration of mechanical stresses in a given section of the material,...

Повний опис

Збережено в:
Бібліографічні деталі
Видавець:National Technical University "Kharkiv Polytechnic Institute" and State Institution “Institute of Technical Problems of Magnetism of the National Academy of Sciences of Ukraine”
Дата:2024
Автор: Palchykov, O. О.
Формат: Стаття
Мова:English
Ukrainian
Опубліковано: National Technical University "Kharkiv Polytechnic Institute" and State Institution “Institute of Technical Problems of Magnetism of the National Academy of Sciences of Ukraine” 2024
Теми:
Онлайн доступ:http://eie.khpi.edu.ua/article/view/293407
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!

Репозиторії

Electrical Engineering & Electromechanics
id eiekhpieduua-article-293407
record_format ojs
institution Electrical Engineering & Electromechanics
collection OJS
language English
Ukrainian
topic insulating material
internal and surface defect
electrostatics
structural mechanics
von Mises stress
finite element method
ізоляційний матеріал
внутрішній і поверхневий дефект
електростатика
структурна механіка
механічні напруження за фон Мізесом
метод скінченних елементів
spellingShingle insulating material
internal and surface defect
electrostatics
structural mechanics
von Mises stress
finite element method
ізоляційний матеріал
внутрішній і поверхневий дефект
електростатика
структурна механіка
механічні напруження за фон Мізесом
метод скінченних елементів
Palchykov, O. О.
Determination of the maximum mechanical stresses in the insulating material around a defect with a high dielectric permittivity in an electrostatic field
topic_facet insulating material
internal and surface defect
electrostatics
structural mechanics
von Mises stress
finite element method
ізоляційний матеріал
внутрішній і поверхневий дефект
електростатика
структурна механіка
механічні напруження за фон Мізесом
метод скінченних елементів
format Article
author Palchykov, O. О.
author_facet Palchykov, O. О.
author_sort Palchykov, O. О.
title Determination of the maximum mechanical stresses in the insulating material around a defect with a high dielectric permittivity in an electrostatic field
title_short Determination of the maximum mechanical stresses in the insulating material around a defect with a high dielectric permittivity in an electrostatic field
title_full Determination of the maximum mechanical stresses in the insulating material around a defect with a high dielectric permittivity in an electrostatic field
title_fullStr Determination of the maximum mechanical stresses in the insulating material around a defect with a high dielectric permittivity in an electrostatic field
title_full_unstemmed Determination of the maximum mechanical stresses in the insulating material around a defect with a high dielectric permittivity in an electrostatic field
title_sort determination of the maximum mechanical stresses in the insulating material around a defect with a high dielectric permittivity in an electrostatic field
title_alt Визначення максимальних механічних напружень в ізоляційному матеріалі навколо дефекту з високою діелектричною проникністю в електростатичному полі
description Introduction. All insulating macrohomogeneous solid materials change shape under the influence of an electric field. Problem. The presence of minor defects changes the distribution of an electric field and causes a significant concentration of mechanical stresses in a given section of the material, which, under certain circumstances, can cause partial or complete destruction of this material. Goal. The purpose of the work is to determine maximum mechanical stresses according to the von Mises criterion in insulating materials around defects with ionized air and water in an electrostatic field. Also, to analyze the influence of the following parameters on the indicated stresses: the location of the defect, the orientation angle of the semi-major axis of the defect cross-section, the ratio of semi-major and semi-minor axes, elastic and dielectric properties of the insulating material and the defect. Methodology. The study is based on the interrelated equations of electrostatics and structural mechanics for an isotropic piecewise homogeneous medium. The solution of these equations is obtained by the finite element method. Results. Graphs of dependences of maximum mechanical stresses on the ratio of semi-major and semi-minor axes of the ellipsoidal cross-section of the defect have been obtained. The minimum ratio of the greatest stresses in the insulating materials around the surface cracks and pores for ionized air has been 9.3 times for the maximum ratio of major and minor semi-axes of the cross-section of the defect considered in the work, which is 10. For a water defect, the similar ratio has been 2...5.6 times, increasing when the relative dielectric permittivity of the insulating material changes from 7 to 2. When Young’s modulus of the insulating material increases from 1 MPa to 100 GPa, the angles of the inclination of the linearized dependences of maximum mechanical stresses around bounded pores with ionized air (water) to the axis of the ratio of major and minor semi-axes of the defect cross-section have been increased by 35.9° (58.0°) and 18.6° (20.1°) at orientations of major semi-axes at angles of 0° and 45°, respectively. Originality. The numerical-field mathematical two-dimensional model has been developed for the first time, which consists of sequentially solved equations of electrostatics and structural mechanics, for the determination of the distribution of mechanical stresses in an insulating material with a liquid or gaseous defect. It has been established for the first time that the ratio of the elastic properties of the insulating material and the defect determines the angle of the inclination of the linearized dependence of the maximum mechanical stress to the axis of the ratio of major and minor semi-axes of the defect cross-section. Practical value. The types of defects that contribute to the aging of insulation materials under the combined action of an electric field and a stress field to the greatest extent have been established.
publisher National Technical University "Kharkiv Polytechnic Institute" and State Institution “Institute of Technical Problems of Magnetism of the National Academy of Sciences of Ukraine”
publishDate 2024
url http://eie.khpi.edu.ua/article/view/293407
work_keys_str_mv AT palchykovoo determinationofthemaximummechanicalstressesintheinsulatingmaterialaroundadefectwithahighdielectricpermittivityinanelectrostaticfield
AT palchykovoo viznačennâmaksimalʹnihmehaníčnihnapruženʹvízolâcíjnomumateríalínavkolodefektuzvisokoûdíelektričnoûproniknístûvelektrostatičnomupolí
first_indexed 2024-06-01T14:40:43Z
last_indexed 2024-06-01T14:40:43Z
_version_ 1800670117785239552
spelling eiekhpieduua-article-2934072024-01-01T09:17:37Z Determination of the maximum mechanical stresses in the insulating material around a defect with a high dielectric permittivity in an electrostatic field Визначення максимальних механічних напружень в ізоляційному матеріалі навколо дефекту з високою діелектричною проникністю в електростатичному полі Palchykov, O. О. insulating material internal and surface defect electrostatics structural mechanics von Mises stress finite element method ізоляційний матеріал внутрішній і поверхневий дефект електростатика структурна механіка механічні напруження за фон Мізесом метод скінченних елементів Introduction. All insulating macrohomogeneous solid materials change shape under the influence of an electric field. Problem. The presence of minor defects changes the distribution of an electric field and causes a significant concentration of mechanical stresses in a given section of the material, which, under certain circumstances, can cause partial or complete destruction of this material. Goal. The purpose of the work is to determine maximum mechanical stresses according to the von Mises criterion in insulating materials around defects with ionized air and water in an electrostatic field. Also, to analyze the influence of the following parameters on the indicated stresses: the location of the defect, the orientation angle of the semi-major axis of the defect cross-section, the ratio of semi-major and semi-minor axes, elastic and dielectric properties of the insulating material and the defect. Methodology. The study is based on the interrelated equations of electrostatics and structural mechanics for an isotropic piecewise homogeneous medium. The solution of these equations is obtained by the finite element method. Results. Graphs of dependences of maximum mechanical stresses on the ratio of semi-major and semi-minor axes of the ellipsoidal cross-section of the defect have been obtained. The minimum ratio of the greatest stresses in the insulating materials around the surface cracks and pores for ionized air has been 9.3 times for the maximum ratio of major and minor semi-axes of the cross-section of the defect considered in the work, which is 10. For a water defect, the similar ratio has been 2...5.6 times, increasing when the relative dielectric permittivity of the insulating material changes from 7 to 2. When Young’s modulus of the insulating material increases from 1 MPa to 100 GPa, the angles of the inclination of the linearized dependences of maximum mechanical stresses around bounded pores with ionized air (water) to the axis of the ratio of major and minor semi-axes of the defect cross-section have been increased by 35.9° (58.0°) and 18.6° (20.1°) at orientations of major semi-axes at angles of 0° and 45°, respectively. Originality. The numerical-field mathematical two-dimensional model has been developed for the first time, which consists of sequentially solved equations of electrostatics and structural mechanics, for the determination of the distribution of mechanical stresses in an insulating material with a liquid or gaseous defect. It has been established for the first time that the ratio of the elastic properties of the insulating material and the defect determines the angle of the inclination of the linearized dependence of the maximum mechanical stress to the axis of the ratio of major and minor semi-axes of the defect cross-section. Practical value. The types of defects that contribute to the aging of insulation materials under the combined action of an electric field and a stress field to the greatest extent have been established. В роботі методом скінченних елементів розроблено двовимірну математичну модель розрахунку розподілу механічних напружень під дією електростатичного поля в ізоляційному матеріалі з дефектом. Модель являє собою послідовно розв’язувані задачі електростатики та структурної механіки. У якості матеріалу дефекту виступали іонізоване повітря і вода. Розглядалися варіанти з внутрішніми та поверхневими дефектами, з врахуванням і без пружних властивостей дефекту. Поле механічних напружень розраховувалось на основі критерію фон Мізеса. Встановлено, що мінімальне відношення найбільших напружень в ізоляційних матеріалах з поверхневими тріщинами і порами для іонізованого повітря склало 9,3 рази для максимального співвідношення півосей поперечного перерізу дефекту 10. Для водного дефекту аналогічне відношення склало 2…5,6 разів, збільшуючись при зміні відносної діелектричної проникності ізоляційного матеріалу від 7 до 2. Визначено, що при збільшенні модуля Юнга ізоляційного матеріалу від 1 МПа до 100 ГПа кути нахилу до вісі лінеаризованих залежностей максимальних механічних напружень навколо обмежених пор з іонізованим повітрям (водою) збільшуються на 35,9° (58,0°) і 18,6° (20,1°) при орієнтаціях великих півосей під кутами 0° і 45° відповідно. National Technical University "Kharkiv Polytechnic Institute" and State Institution “Institute of Technical Problems of Magnetism of the National Academy of Sciences of Ukraine” 2024-01-01 Article Article application/pdf application/pdf http://eie.khpi.edu.ua/article/view/293407 10.20998/2074-272X.2024.1.09 Electrical Engineering & Electromechanics; No. 1 (2024); 69-76 Электротехника и Электромеханика; № 1 (2024); 69-76 Електротехніка і Електромеханіка; № 1 (2024); 69-76 2309-3404 2074-272X en uk http://eie.khpi.edu.ua/article/view/293407/286230 http://eie.khpi.edu.ua/article/view/293407/286232 Copyright (c) 2023 O. О. Palchykov http://creativecommons.org/licenses/by-nc/4.0