Fractional-based iterative learning-optimal model predictive control of speed induction motor regulation for electric vehicles application
Introduction. A new control strategy based on the combination of optimal model predictive control (OMPC) with fractional iterative learning control (F-ILC) for speed regulation of an induction motor (IM) for electric vehicles (EVs) application is presented. OMPC uses predictive models to optimize sp...
Збережено в:
Дата: | 2024 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
National Technical University "Kharkiv Polytechnic Institute" and State Institution “Institute of Technical Problems of Magnetism of the National Academy of Sciences of Ukraine”
2024
|
Теми: | |
Онлайн доступ: | http://eie.khpi.edu.ua/article/view/299115 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Electrical Engineering & Electromechanics |
Репозитарії
Electrical Engineering & Electromechanicsid |
eiekhpieduua-article-299115 |
---|---|
record_format |
ojs |
institution |
Electrical Engineering & Electromechanics |
baseUrl_str |
|
datestamp_date |
2024-08-19T17:45:12Z |
collection |
OJS |
language |
English |
topic |
optimal model predictive control iterative learning control induction motor speed control electric vehicles |
spellingShingle |
optimal model predictive control iterative learning control induction motor speed control electric vehicles Nemouchi, B. Rezgui, S. E. Benalla, H. Nebti, K. Fractional-based iterative learning-optimal model predictive control of speed induction motor regulation for electric vehicles application |
topic_facet |
оптимальна модель прогнозного керування ітераційне навчальне керування асинхронний двигун керування швидкістю електромобілі optimal model predictive control iterative learning control induction motor speed control electric vehicles |
format |
Article |
author |
Nemouchi, B. Rezgui, S. E. Benalla, H. Nebti, K. |
author_facet |
Nemouchi, B. Rezgui, S. E. Benalla, H. Nebti, K. |
author_sort |
Nemouchi, B. |
title |
Fractional-based iterative learning-optimal model predictive control of speed induction motor regulation for electric vehicles application |
title_short |
Fractional-based iterative learning-optimal model predictive control of speed induction motor regulation for electric vehicles application |
title_full |
Fractional-based iterative learning-optimal model predictive control of speed induction motor regulation for electric vehicles application |
title_fullStr |
Fractional-based iterative learning-optimal model predictive control of speed induction motor regulation for electric vehicles application |
title_full_unstemmed |
Fractional-based iterative learning-optimal model predictive control of speed induction motor regulation for electric vehicles application |
title_sort |
fractional-based iterative learning-optimal model predictive control of speed induction motor regulation for electric vehicles application |
title_alt |
Fractional-based iterative learning-optimal model predictive control of speed induction motor regulation for electric vehicles application |
description |
Introduction. A new control strategy based on the combination of optimal model predictive control (OMPC) with fractional iterative learning control (F-ILC) for speed regulation of an induction motor (IM) for electric vehicles (EVs) application is presented. OMPC uses predictive models to optimize speed control actions by considering the dynamic behavior of the IM, when integrated with the F-ILC, the system learns and refines the speed control iteratively based on previous iterations, adapting to the specific characteristics of the IM and improving performance over time. The synergy between OMPC and F-ILC named F-ILC-OMPC enhances the precision and adaptability of speed control for IMs in EVs application, and optimizes the energy efficiency and responsiveness under varying driving conditions. The novelty lies in the conjunction of the OMPC with the ILC-based on the fractional calculus to regulate the speed of IMs, which is original. Purpose. The new control strategy provides increased performance, robustness and adaptability to changing operational conditions. Methods. The mathematical development of a control law that mitigates the disturbance and achieves accurate and efficient speed regulation. The effectiveness of the suggested control strategy was assessed via simulations in MATLAB conducted on an IM system. Results. The results clearly show the benefits of the F-ILC-OMPC methodology in attaining accurate speed control, minimizing steady-state error and enhanced disturbance rejection. Practical value. The main perspective lies in the development of a speed control strategy for IMs for EVs and the establishment of reliable and efficient electrical systems using ILC-OMPC control. This research has the prospect of a subsequent implementation of these results in experimental prototypes. References 24, tables 2, figures 9. |
publisher |
National Technical University "Kharkiv Polytechnic Institute" and State Institution “Institute of Technical Problems of Magnetism of the National Academy of Sciences of Ukraine” |
publishDate |
2024 |
url |
http://eie.khpi.edu.ua/article/view/299115 |
work_keys_str_mv |
AT nemouchib fractionalbasediterativelearningoptimalmodelpredictivecontrolofspeedinductionmotorregulationforelectricvehiclesapplication AT rezguise fractionalbasediterativelearningoptimalmodelpredictivecontrolofspeedinductionmotorregulationforelectricvehiclesapplication AT benallah fractionalbasediterativelearningoptimalmodelpredictivecontrolofspeedinductionmotorregulationforelectricvehiclesapplication AT nebtik fractionalbasediterativelearningoptimalmodelpredictivecontrolofspeedinductionmotorregulationforelectricvehiclesapplication |
first_indexed |
2024-08-20T04:03:30Z |
last_indexed |
2024-08-20T04:03:30Z |
_version_ |
1818541161594224640 |
spelling |
eiekhpieduua-article-2991152024-08-19T17:45:12Z Fractional-based iterative learning-optimal model predictive control of speed induction motor regulation for electric vehicles application Fractional-based iterative learning-optimal model predictive control of speed induction motor regulation for electric vehicles application Nemouchi, B. Rezgui, S. E. Benalla, H. Nebti, K. оптимальна модель прогнозного керування ітераційне навчальне керування асинхронний двигун керування швидкістю електромобілі optimal model predictive control iterative learning control induction motor speed control electric vehicles Introduction. A new control strategy based on the combination of optimal model predictive control (OMPC) with fractional iterative learning control (F-ILC) for speed regulation of an induction motor (IM) for electric vehicles (EVs) application is presented. OMPC uses predictive models to optimize speed control actions by considering the dynamic behavior of the IM, when integrated with the F-ILC, the system learns and refines the speed control iteratively based on previous iterations, adapting to the specific characteristics of the IM and improving performance over time. The synergy between OMPC and F-ILC named F-ILC-OMPC enhances the precision and adaptability of speed control for IMs in EVs application, and optimizes the energy efficiency and responsiveness under varying driving conditions. The novelty lies in the conjunction of the OMPC with the ILC-based on the fractional calculus to regulate the speed of IMs, which is original. Purpose. The new control strategy provides increased performance, robustness and adaptability to changing operational conditions. Methods. The mathematical development of a control law that mitigates the disturbance and achieves accurate and efficient speed regulation. The effectiveness of the suggested control strategy was assessed via simulations in MATLAB conducted on an IM system. Results. The results clearly show the benefits of the F-ILC-OMPC methodology in attaining accurate speed control, minimizing steady-state error and enhanced disturbance rejection. Practical value. The main perspective lies in the development of a speed control strategy for IMs for EVs and the establishment of reliable and efficient electrical systems using ILC-OMPC control. This research has the prospect of a subsequent implementation of these results in experimental prototypes. References 24, tables 2, figures 9. Вступ. Представлено нову стратегію керування, яка базується на поєднанні прогнозного керування оптимальною моделлю (OMPC) з дробовим ітеративним навчальним керуванням (F-ILC) для регулювання швидкості асинхронного двигуна (АД) для застосування в електромобілях. OMPC використовує прогнозні моделі для оптимізації дій керування швидкістю, враховуючи динамічну поведінку АД. При інтеграції з ILC на основі дробів система вивчає та вдосконалює керування швидкістю ітеративно на основі попередніх ітерацій, адаптуючись до конкретних характеристик АД та підвищення продуктивності з часом. Синергія між ОMPC і F-ILC під назвою F-ILC-OMPC підвищує точність і адаптивність регулювання швидкості для АД в електромобілях, а також оптимізує енергоефективність і чутливість за різних умов руху. Новизна полягає в поєднанні OMPC з ILC на основі дробового числення для регулювання швидкості АД, що є оригінальним. Призначення. Нова стратегія управління забезпечує підвищену продуктивність, надійність і адаптивність до мінливих умов експлуатації. Методи. Математичний розвиток закону керування, який пом’якшує збурення та досягає точного та ефективного регулювання швидкості. Ефективність запропонованої стратегії керування була оцінена за допомогою моделювання у MATLAB, проведеного на системі АД. Результати. Результати чітко показують переваги методології F-ILC-OMPC у досягненні точного контролю швидкості, мінімізації стаціонарної помилки та покращеного усунення перешкод. Практична цінність. Основна перспектива полягає в розробці стратегії регулювання швидкості АД для електромобілів і створення надійних і ефективних електричних систем з використанням керування ILC-OMPC. Дане дослідження має перспективу подальшого впровадження цих результатів в експериментальні прототипи. Бібл. 24, табл. 2, рис. 9. National Technical University "Kharkiv Polytechnic Institute" and State Institution “Institute of Technical Problems of Magnetism of the National Academy of Sciences of Ukraine” 2024-08-19 Article Article application/pdf http://eie.khpi.edu.ua/article/view/299115 10.20998/2074-272X.2024.5.02 Electrical Engineering & Electromechanics; No. 5 (2024); 14-19 Электротехника и Электромеханика; № 5 (2024); 14-19 Електротехніка і Електромеханіка; № 5 (2024); 14-19 2309-3404 2074-272X en http://eie.khpi.edu.ua/article/view/299115/300541 Copyright (c) 2024 B. Nemouchi, S. E. Rezgui, H. Benalla, K. Nebti http://creativecommons.org/licenses/by-nc/4.0 |