Brushless DC motor drive with optimal fractional-order sliding-mode control based on a genetic algorithm
Introduction. Brushless DC (BLDC) motor is a type of permanent magnet synchronous motor that operates without brushes employed in many applications owing to its efficiency and control in electric cars. One of the main reasons BLDC motors are better than brushed DC motors is that they employ an elect...
Gespeichert in:
| Datum: | 2025 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
National Technical University "Kharkiv Polytechnic Institute" and Аnatolii Pidhornyi Institute of Power Machines and Systems of NAS of Ukraine
2025
|
| Schlagworte: | |
| Online Zugang: | http://eie.khpi.edu.ua/article/view/317438 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Electrical Engineering & Electromechanics |
Institution
Electrical Engineering & Electromechanics| Zusammenfassung: | Introduction. Brushless DC (BLDC) motor is a type of permanent magnet synchronous motor that operates without brushes employed in many applications owing to its efficiency and control in electric cars. One of the main reasons BLDC motors are better than brushed DC motors is that they employ an electronic commutation circuit instead of a mechanical one. The fractional order sliding mode controller (FOSMC) was used, which is characterized by high durability and is not affected by the disturbances that the motor is exposed to during operation, as well as overcoming the chattering phenomenon present in the conventional sliding mode controller (CSMC). The novelty of the proposed work consists of to use FOSMC by genetic algorithm (GA) to mitigate the chattering phenomena in sliding mode control (SMC) for optimal response for speed control and regeneration braking control in BLDC motor by using single stage by voltage source inverter and decrease energy use during motor starting. Purpose. Improvement FOSMC techniques for the regulation of BLDC motor’s driving control system. Methods. Employing the GA to optimize the parameters of FOSMC to mitigate the chattering phenomenon in SMC to regulate BLDC motor’s driving control system. Results. A comparison was made between two types of sliding controllers to obtain the best performance of the control system in speed control operations and motor braking operations, the FOSMC, through parameter optimization via the GA, surpasses the CSMC in achieving optimal performance in driving the BLDC motor. Practical value. FOSMC exhibits superiority over the CSMC, as indicated by the reduced integral time absolute error in motor speed tracking and regenerative brake control, with values of (0.028, 0.046, and 0.075) for the FOSMC, in contrast to (2.72, 1.56, and 0.17) for the CSMC, the overshoot for FOSMC is (0, 0, and 11.4), but for CSMC it is (60.4, 43.7, and 11.2). During braking mode for FOSMC, the power recovery from the motor to the battery was (1.96, 9, and 17.76), but in CSMC, it was (0.99, 4.49, and 11.98). Moreover, the braking length was expedited, and the battery’s initial power consumption diminished at the outset. References 32, tables 5, figures 6. |
|---|