Electric drive vehicle based on sliding mode control technique using a 21-level asymmetrical inverter under different operating conditions
Introduction. Electric vehicles (EVs) have drawn increased attention as a possible remedy for the energy crisis and environmental issues. These days, EVs can be propelled by an extensive range of power electronics to produce the energy required for the motor and operate efficiently at high voltage l...
Saved in:
| Date: | 2025 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Article |
| Language: | English |
| Published: |
National Technical University "Kharkiv Polytechnic Institute" and Аnatolii Pidhornyi Institute of Power Machines and Systems of NAS of Ukraine
2025
|
| Subjects: | |
| Online Access: | http://eie.khpi.edu.ua/article/view/320456 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Electrical Engineering & Electromechanics |
Institution
Electrical Engineering & Electromechanics| Summary: | Introduction. Electric vehicles (EVs) have drawn increased attention as a possible remedy for the energy crisis and environmental issues. These days, EVs can be propelled by an extensive range of power electronics to produce the energy required for the motor and operate efficiently at high voltage levels. Multilevel inverters (MLIs) were designed to address the challenges and limitations of traditional converters .The novelty of the research that is being presented a 21-asymmetric MLI with reduced switching using pulse width modulation technique for powering electric propulsion system of EVs, with the proposed topology delivering notable enhancements in both performance and cost-efficiency compared to conventional asymmetric designs. Purpose. Improving EV performance by utilizing sliding mode control (SMC) technique for controlling a permanent magnet synchronous motor (PMSM) powered by a 21-level reduced switching inverter topology. Methods. This study focuses on assessing the feasibility of a 21-asymmetric MLI with reduced switching. This inverter utilize different input voltage levels for various components and modules, enabling the combination and subtraction of these voltages to create multiple voltage levels for use in the traction system of electric vehicles, designed to power a PMSM. The motor’s operation is controlled using SMC technique with three distinct surfaces, with consideration for the vehicle’s dynamic behavior. Results. Proved that, using a 21-asymmetric MLI to optimize the quality of the output voltage for improving the performance of the EV. The proposed topology offers a cost-effective and simple system that is easy to maintain. Practical value. To assess the effectiveness and resilience of the suggested control system, we conducted simulations using MATLAB/Simulink. Notably, the target speed adheres to the urban driving schedule in Europe, specifically the ECE-15 cycle. References 21, tables 2, figures 10. |
|---|