FINITE ELEMENT TECHNIQUE FOR SOLUTION OF THERMO-CONTACT PROBLEMS AND ITS APPLICATION IN NUMERICAL ANALYSIS OF DEVICES WORKING WITH INDUCTION HEATING
Purpose. To develop an effective approach for the numerical solution of transient thermo-contact problems and present a typical example of its utilization regarding devices working on the principle of thermoelasticity produced by induction heating and specific technological processes intended for as...
Gespeichert in:
| Datum: | 2016 |
|---|---|
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
National Technical University "Kharkiv Polytechnic Institute" and Аnatolii Pidhornyi Institute of Power Machines and Systems of NAS of Ukraine
2016
|
| Schlagworte: | |
| Online Zugang: | http://eie.khpi.edu.ua/article/view/2074-272X.2016.4.03 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Electrical Engineering & Electromechanics |
Institution
Electrical Engineering & Electromechanics| id |
eiekhpieduua-article-76146 |
|---|---|
| record_format |
ojs |
| institution |
Electrical Engineering & Electromechanics |
| baseUrl_str |
|
| datestamp_date |
2017-08-21T18:30:17Z |
| collection |
OJS |
| language |
English |
| topic |
induction heating thermoelasticity multiphysics problems numerical analysis finite element method 621.3 537.8 |
| spellingShingle |
induction heating thermoelasticity multiphysics problems numerical analysis finite element method 621.3 537.8 Pantelyat, Michael G. Doležel, Ivo FINITE ELEMENT TECHNIQUE FOR SOLUTION OF THERMO-CONTACT PROBLEMS AND ITS APPLICATION IN NUMERICAL ANALYSIS OF DEVICES WORKING WITH INDUCTION HEATING |
| topic_facet |
induction heating thermoelasticity multiphysics problems numerical analysis finite element method 621.3 537.8 индукционный нагрев термоупругость мультифизические задачи численный анализ метод конечных элементов 621.3 537.8 индукционный нагрев термоупругость мультифизические задачи численный анализ метод конечных элементов 621.3 537.8 |
| format |
Article |
| author |
Pantelyat, Michael G. Doležel, Ivo |
| author_facet |
Pantelyat, Michael G. Doležel, Ivo |
| author_sort |
Pantelyat, Michael G. |
| title |
FINITE ELEMENT TECHNIQUE FOR SOLUTION OF THERMO-CONTACT PROBLEMS AND ITS APPLICATION IN NUMERICAL ANALYSIS OF DEVICES WORKING WITH INDUCTION HEATING |
| title_short |
FINITE ELEMENT TECHNIQUE FOR SOLUTION OF THERMO-CONTACT PROBLEMS AND ITS APPLICATION IN NUMERICAL ANALYSIS OF DEVICES WORKING WITH INDUCTION HEATING |
| title_full |
FINITE ELEMENT TECHNIQUE FOR SOLUTION OF THERMO-CONTACT PROBLEMS AND ITS APPLICATION IN NUMERICAL ANALYSIS OF DEVICES WORKING WITH INDUCTION HEATING |
| title_fullStr |
FINITE ELEMENT TECHNIQUE FOR SOLUTION OF THERMO-CONTACT PROBLEMS AND ITS APPLICATION IN NUMERICAL ANALYSIS OF DEVICES WORKING WITH INDUCTION HEATING |
| title_full_unstemmed |
FINITE ELEMENT TECHNIQUE FOR SOLUTION OF THERMO-CONTACT PROBLEMS AND ITS APPLICATION IN NUMERICAL ANALYSIS OF DEVICES WORKING WITH INDUCTION HEATING |
| title_sort |
finite element technique for solution of thermo-contact problems and its application in numerical analysis of devices working with induction heating |
| title_alt |
FINITE ELEMENT TECHNIQUE FOR SOLUTION OF THERMO-CONTACT PROBLEMS AND ITS APPLICATION IN NUMERICAL ANALYSIS OF DEVICES WORKING WITH INDUCTION HEATING FINITE ELEMENT TECHNIQUE FOR SOLUTION OF THERMO-CONTACT PROBLEMS AND ITS APPLICATION IN NUMERICAL ANALYSIS OF DEVICES WORKING WITH INDUCTION HEATING |
| description |
Purpose. To develop an effective approach for the numerical solution of transient thermo-contact problems and present a typical example of its utilization regarding devices working on the principle of thermoelasticity produced by induction heating and specific technological processes intended for assembly and disassembly of systems containing shrink fits. Methodology. A finite element technique for solution of 2D multiphysics (electromagnetic, thermal and structural) problems is developed, taking into account temperature dependences of material properties and continuous variations of the contact surfaces. Modeling of the contact interaction between two parts is based on the concept of a special contact finite element having no thickness. The functional for the temperature problem is supplemented with components corresponding to the thermal conductivity of this contact layer. The heat generated due to mutual sliding of both parts can also be taken into account, but the heat capacity (specific heat) of the contact layer is neglected. Using a special 1D 4-node finite elements a system of equations for the description of the thermo-contact problem is obtained. Originality. Relatively simple analytical formulae for calculation of the contact thermal resistances occurring in specific parts of electrical machines are known. The paper offers an alternative approach for the numerical solution of transient thermo-contact problems based on the concept of a special 1D contact finite element having no thickness. Results. The presented technique is applied for the computer simulation of assembly and disassembly of a shrink fit using induction heating. Conclusions regarding the choice of technological modes are made. Comparative computations for drills made from hard alloy and alloyed tool steel are carried out. |
| publisher |
National Technical University "Kharkiv Polytechnic Institute" and Аnatolii Pidhornyi Institute of Power Machines and Systems of NAS of Ukraine |
| publishDate |
2016 |
| url |
http://eie.khpi.edu.ua/article/view/2074-272X.2016.4.03 |
| work_keys_str_mv |
AT pantelyatmichaelg finiteelementtechniqueforsolutionofthermocontactproblemsanditsapplicationinnumericalanalysisofdevicesworkingwithinductionheating AT dolezelivo finiteelementtechniqueforsolutionofthermocontactproblemsanditsapplicationinnumericalanalysisofdevicesworkingwithinductionheating |
| first_indexed |
2025-07-17T11:46:21Z |
| last_indexed |
2025-07-17T11:46:21Z |
| _version_ |
1850411629938737152 |
| spelling |
eiekhpieduua-article-761462017-08-21T18:30:17Z FINITE ELEMENT TECHNIQUE FOR SOLUTION OF THERMO-CONTACT PROBLEMS AND ITS APPLICATION IN NUMERICAL ANALYSIS OF DEVICES WORKING WITH INDUCTION HEATING FINITE ELEMENT TECHNIQUE FOR SOLUTION OF THERMO-CONTACT PROBLEMS AND ITS APPLICATION IN NUMERICAL ANALYSIS OF DEVICES WORKING WITH INDUCTION HEATING FINITE ELEMENT TECHNIQUE FOR SOLUTION OF THERMO-CONTACT PROBLEMS AND ITS APPLICATION IN NUMERICAL ANALYSIS OF DEVICES WORKING WITH INDUCTION HEATING Pantelyat, Michael G. Doležel, Ivo induction heating thermoelasticity multiphysics problems numerical analysis finite element method 621.3 537.8 индукционный нагрев термоупругость мультифизические задачи численный анализ метод конечных элементов 621.3 537.8 индукционный нагрев термоупругость мультифизические задачи численный анализ метод конечных элементов 621.3 537.8 Purpose. To develop an effective approach for the numerical solution of transient thermo-contact problems and present a typical example of its utilization regarding devices working on the principle of thermoelasticity produced by induction heating and specific technological processes intended for assembly and disassembly of systems containing shrink fits. Methodology. A finite element technique for solution of 2D multiphysics (electromagnetic, thermal and structural) problems is developed, taking into account temperature dependences of material properties and continuous variations of the contact surfaces. Modeling of the contact interaction between two parts is based on the concept of a special contact finite element having no thickness. The functional for the temperature problem is supplemented with components corresponding to the thermal conductivity of this contact layer. The heat generated due to mutual sliding of both parts can also be taken into account, but the heat capacity (specific heat) of the contact layer is neglected. Using a special 1D 4-node finite elements a system of equations for the description of the thermo-contact problem is obtained. Originality. Relatively simple analytical formulae for calculation of the contact thermal resistances occurring in specific parts of electrical machines are known. The paper offers an alternative approach for the numerical solution of transient thermo-contact problems based on the concept of a special 1D contact finite element having no thickness. Results. The presented technique is applied for the computer simulation of assembly and disassembly of a shrink fit using induction heating. Conclusions regarding the choice of technological modes are made. Comparative computations for drills made from hard alloy and alloyed tool steel are carried out. Описана методика решения методом конечных элементов мультифизических (электромагнитных, тепловых и механических) задач с учетом зависимостей свойств материалов от температуры и изменения контактных поверхностей. Предложенный подход использован для численного анализа устройств, функционирующих на базе явления термоупругости в процессе индукционного нагрева и оригинальных технологических процессов, предназначенных для сборки и разборки конструкций с напряженными посадками. Применение разработанной методики проиллюстрировано на конкретном примере. Приведен анализ полученных результатов. Описана методика решения методом конечных элементов мультифизических (электромагнитных, тепловых и механических) задач с учетом зависимостей свойств материалов от температуры и изменения контактных поверхностей. Предложенный подход использован для численного анализа устройств, функционирующих на базе явления термоупругости в процессе индукционного нагрева и оригинальных технологических процессов, предназначенных для сборки и разборки конструкций с напряженными посадками. Применение разработанной методики проиллюстрировано на конкретном примере. Приведен анализ полученных результатов. National Technical University "Kharkiv Polytechnic Institute" and Аnatolii Pidhornyi Institute of Power Machines and Systems of NAS of Ukraine 2016-08-30 Article Article application/pdf http://eie.khpi.edu.ua/article/view/2074-272X.2016.4.03 10.20998/2074-272X.2016.4.03 Electrical Engineering & Electromechanics; No. 4 (2016); 22-27 Электротехника и Электромеханика; № 4 (2016); 22-27 Електротехніка і Електромеханіка; № 4 (2016); 22-27 2309-3404 2074-272X en http://eie.khpi.edu.ua/article/view/2074-272X.2016.4.03/72273 Copyright (c) 2016 Michael G. Pantelyat, Ivo Doležel https://creativecommons.org/licenses/by-nc/4.0 |