Do we need a more sophisticated multilayer artificial neural network to compute roughness coefficient?
Artificial neural networks (ANNs) are one of the most rapidly growing fields of soft computing. Along with deep learning, they are currently the most widely used machine learning techniques. Artificial neural networks are especially suitable for problem-solving where a researcher deals with incomple...
Gespeichert in:
| Datum: | 2023 |
|---|---|
| Hauptverfasser: | Khodnevych, Yaroslav V., Stefanyshyn, Dmytro V. |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Kyiv National University of Construction and Architecture
2023
|
| Schlagworte: | |
| Online Zugang: | https://es-journal.in.ua/article/view/297285 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Environmental safety and natural resources |
Institution
Environmental safety and natural resourcesÄhnliche Einträge
-
Data arrangements to train an artificial neural network within solving the tasks for calculating the Chézy roughness coefficient under uncertainty of parameters determining the hydraulic resistance to flow in river channels
von: Khodnevych, Yaroslav V., et al.
Veröffentlicht: (2022) -
Do we need a more sophisticated multilayer artificial neural network to compute roughness coefficient?
von: Y. Khodnevych, et al.
Veröffentlicht: (2023) -
Еstimating the Chézy roughness coefficient as a characteristic of hydraulic resistance to flow in river channels: a general overview, existing challenges, and ways of their overcoming
von: Stefanyshyn, Dmytro V., et al.
Veröffentlicht: (2021) -
Neural networks’ learning process acceleration
von: Katerynych, L., et al.
Veröffentlicht: (2020) -
Experimental study of the formation of surface roughness of the sprayed ceramic layer on the necks of the rotor shafts of gas turbine
von: Лебедев, Владимир, et al.
Veröffentlicht: (2014)